Publications by authors named "Pi Tai Chou"

Levels of tissue oxygenation and collagen regeneration are critical indicators in the early evaluation of wound healing. Traditionally, these factors have been assessed using separate instruments and different methodologies. Here, we adopt the spatially averaged phosphorescence lifetime approach using Re-diimine complexes (Re-probe) to enable simultaneous quantification of these two critical factors in healing wounds.

View Article and Find Full Text PDF

By strategic design and synthesis of a new series of phosphonium salts (compounds 1-7[OTf]), where [OTf] stands for the trifluoromethanesulfonate anion, we performed comprehensive spectroscopic and dynamic studies on the photoinduced anion migration in toluene. Our aim is to probe if the anion migration is associated with an intrinsic barrier or is barrier-free. After the occurrence of excited-state intramolecular charge transfer (ESICT) in 1-7, the charge redistribution of the cation triggers the translocation of the counter anion [OTf], resulting in emission spectral temporal evolution.

View Article and Find Full Text PDF

We report the design and synthesis of indanone derivatives 1-4 with RR'N-H⋯OC intramolecular hydrogen bonds, in which ESIPT takes place and its dynamics and thermodynamics correlate with H-bond strength, facilitated by electron-withdrawing R' groups. Compound 4 (R' = COCF) shows mechanically induced ESIPT for the first time, where -CF⋯HN- interaction plays a key role in the non-centrosymmetric crystal packing.

View Article and Find Full Text PDF

A novel series of excited-state intramolecular proton transfer (ESIPT) emitters, namely, , , and , endowed with dual intramolecular hydrogen bonds, were designed and synthesized. In the condensed phase, exhibit unmatched absorption and emission spectral features, where the minor 0-0 absorption peak becomes a major one in the emission. Detailed spectroscopic and dynamic approaches conclude fast ground-state equilibrium among enol-enol (EE), enol-keto (EK), and keto-keto (KK) isomers.

View Article and Find Full Text PDF

In this work, we report the syntheses of three Pt(II) emitters, namely, Pt4N1, Pt4N2, and Pt4N3, to which their tetradentate chelates were assembled by linking two pyrazolate chelates with a single xylenylamino entity. Functionalization of Pt4N1 was achieved upon the addition of electronegative CF substituent on pyridinyl groups and switching to more electron-deficient pyrazinyl groups in giving Pt4N2 and Pt4N3, respectively. The vertically arranged xylenylamino entity has effectively suppressed the inter-molecular π-π stacking and Pt⋅⋅⋅Pt interaction, as shown by the single crystal X-ray structural analyses.

View Article and Find Full Text PDF

Lately, carbazole-based self-assembled monolayers (SAMs) are widely employed as effective hole-selective layers (HSLs) in inverted perovskite solar cells (PSCs). Nevertheless, these SAMs tend to aggregate in solvents due to their amphiphilic nature, hindering the formation of a monolayer on the ITO substrate and impeding effective passivation of deep defects in the perovskites. In this study, a series of new SAMs including DPA-B-PY, CBZ-B-PY, POZ-B-PY, POZ-PY, POZ-T-PY, and POZ-BT-PY are synthesized, which are employed as interfacial repairers and coated atop CNph SAM to form a robust CNph SAM@pseudo-planar monolayer as HSL in efficient inverted PSCs.

View Article and Find Full Text PDF

Using a transfer printing technique, we imprint a layer of a designated near-infrared fluorescent dye BTP-eC9 onto a thin layer of Pt(II) complex, both of which are capable of self-assembly. Before integration, the Pt(II) complex layer gives intense deep-red phosphorescence maximized at ~740 nm, while the BTP-eC9 layer shows fluorescence at > 900 nm. Organic light emitting diodes fabricated under the imprinted bilayer architecture harvest most of Pt(II) complex phosphorescence, which undergoes triplet-to-singlet energy transfer to the BTP-eC9 dye, resulting in high-intensity hyperfluorescence at > 900 nm.

View Article and Find Full Text PDF

This research addresses the pH-dependency limitation in electrocatalytic hydrogen evolution reactions (HER) by creating heterostructures through the chemical bonding between 2D-dichalcogenides and VCT (T = OH, O) planes. The one-step solvothermal synthesis employed in this study constructs a synergistically interacted 1T phase of, e.g.

View Article and Find Full Text PDF

14,14'-Bidibenzo[a,j]anthracenes (BDBAs) were prepared by iridium-catalyzed annulation of 5,5'-biterphenylene with alkynes. The molecular geometries of overcrowded BDBAs were verified by X-ray crystallography. The two dibenzo[a,j]anthryl moieties are connected through the sterically hindered 14 positions, resulting in highly distorted molecular halves.

View Article and Find Full Text PDF

We demonstrate directed translocation of ClO anions from cationic to neutral binding site along the synthetized BPym-OH dye molecule that exhibits coupled excited-state intramolecular proton-transfer (ESIPT) and charge-transfer (CT) reaction (PCCT). The results of steady-state and time-resolved spectroscopy together with computer simulation and modeling show that in low polar toluene the excited-state redistribution of electronic charge enhanced by ESIPT generates the driving force, which is much stronger than by CT reaction itself and provides more informative gigantic shifts of fluorescence spectra signaling on ultrafast ion motion. The associated with ion translocation red-shifted fluorescence band (at 750 nm, extending to near-IR region) appears at the time ~83 ps as a result of electrochromic modulation of PCCT reaction.

View Article and Find Full Text PDF

Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms.

View Article and Find Full Text PDF

The chapter on the thiol-related hydrogen bond (H-bond) and its excited-state intramolecular proton-transfer (ESIPT) reaction was recently opened where compound 4'-diethylamino-3-mercaptoflavone () undergoes ESIPT in both cyclohexane solution and solid, giving a 710 nm tautomer emission with an anomalously large Stokes shift of 12,230 cm. Considering the thiol H-bond to be unconventional compared to the conventional Pauling-type -OH or -NH H-bond, it is thus essential and timely to probe its fundamental difference between their ESIPT. However, thiol-associated ESIPT tends to be nonemissive due to the dominant π* character of the tautomeric lowest excited state.

View Article and Find Full Text PDF

Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %).

View Article and Find Full Text PDF

A new series of biaryls, bi-linear-terphenylenes (BLTPs), were prepared using the tert-butyllithium-mediated cyclization as the key synthetic step. The three-dimensional structures of the studied compounds were verified using X-ray crystallography and DFT calculations. Tetraaryl(ethynyl)-substituted BLTPs are highly crowded molecules, and the internal rotation around the central C-C bond is restricted due to a high barrier (>50 kcal/mol).

View Article and Find Full Text PDF

Exciplex-forming systems that display thermally activated delayed fluorescence are widely used for fabricating organic light-emitting diodes. However, their further development can be hindered through a lack of structural and thermodynamic characterization. Here we report the generation of inclusion complexes between a cage-like, macrocyclic, electron-accepting host (A) and various N-methyl-indolocarbazole-based electron-donating guests (D), which exhibit exciplex-like thermally activated delayed fluorescence via a through-space electron-transfer process.

View Article and Find Full Text PDF

Quadrupolar bis-coumarins bearing dialkylamino groups, prepared by a double Pechmann reaction and subsequent oxidation, strongly emit yellow-orange light. Comparison with non-substituted analogs reveals that, the photophysical properties of the conjugated bis-coumarins are controlled both by the dialkylamino substituents and by the π-system. Analogous but non-conjugated bis-coumarins emit blue light both in solution and in crystalline state.

View Article and Find Full Text PDF

The rotation of a C = C bond in an alkene can be efficiently accelerated by creating the high-strain ground state and stabilizing the transition state of the process. Herein, the synthesis, structures, and properties of several highly twisted alkenes are comprehensively explored. A facile and practical synthetic approach to target molecules is developed.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid-functionalized porphyrin derivatives, namely AC-1, AC-3, and AC-5, and present, for the first time, a strategy to exploit the large π-moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron-rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects.

View Article and Find Full Text PDF

Aryl transfer between heteroatoms was photochemically available through radical initiation followed by a bimolecular reaction. However, such an excited-state reaction has rarely been reported through a photoinduced intramolecular pathway in the π-conjugated systems. Herein, we found, for the first time, a clean photoinduced intramolecular aryl shift for imidazolyl-quinoline derivatives (imidazophenanthrene) and (imidazophenanthroline), of which the photoproducts are thermally reversible.

View Article and Find Full Text PDF

Solvent (, water)-catalyzed proton transfer (SCPT) the relay of hydrogen (H)-bonds plays a key role in proton migration. In this study, a new class of 1-pyrrolo[3,2-]quinolines (PyrQs) and their derivatives were synthesized, with sufficient separation of the pyrrolic proton donating and pyridinic proton accepting sites to probe excited-state SCPT. There was dual fluorescence for all PyrQs in methanol, , normal (PyrQ) and tautomer 8-pyrrolo[3,2]quinoline (8H-PyrQ) emissions.

View Article and Find Full Text PDF

Crystalline diphosphonium iodides [MeR P-spacer-R Me]I with phenylene (1, 2), naphthalene (3, 4), biphenyl (5) and anthracene (6) as aromatic spacers, are photoemissive under ambient conditions. The emission colors (λ values from 550 to 880 nm) and intensities (Φ reaching 0.75) are defined by the composition and substitution geometry of the central conjugated chromophore motif, and the anion-π interactions.

View Article and Find Full Text PDF

Phosphonium-based compounds gain attention as promising photofunctional materials. As a contribution to the emerging field, we present a series of donor-acceptor ionic dyes, which were constructed by tailoring phosphonium (A) and extended π-NR (D) fragments to an anthracene framework. The alteration of the π-spacer of electron-donating substituents in species with terminal - PPh Me groups exhibits a long absorption wavelength up to λ =527 nm in dichloromethane and shifted the emission to the near-infrared (NIR) region (λ=805 nm for thienyl aniline donor), although at low quantum yield (Φ<0.

View Article and Find Full Text PDF

In this study, we designed and synthesized three series of blue emitting homoleptic iridium(III) phosphors bearing 4-cyano-3-methyl-1-phenyl-6-(trifluoromethyl)-benzo[]imidazol-2-ylidene (mfcp), 5-cyano-1-methyl-3-phenyl-6-(trifluoromethyl)-benzo[]imidazol-2-ylidene (ofcp), and 1-(3-(-butyl)phenyl)-6-cyano-3-methyl-4-(trifluoromethyl)-benzo[]imidazol-2-ylidene (5-mfcp) cyclometalates, respectively. These iridium complexes exhibit intense phosphorescence in the high energy region of 435-513 nm in the solution state at RT, to which the relatively large T → S transition dipole moment is beneficial for serving as a pure emitter and an energy donor to the multiresonance thermally activated delayed fluorescence (MR-TADF) terminal emitters via Förster resonance energy transfer (FRET). The resulting OLEDs achieved true blue, narrow bandwidth EL with a max EQE of 16-19% and great suppression of efficiency roll-off with ν-DABNA and -DABNA.

View Article and Find Full Text PDF