Climate change and increasing water demands underscore the importance of water resource management. Precise precipitation forecasting is critical to effective management. This study introduced a Daily Precipitation Forecasting Hybrid (DPFH) technique for central Thailand, which uses three different input-based models to improve prediction accuracy.
View Article and Find Full Text PDFUnderstanding hydrological processes necessitates the use of modeling techniques due to the intricate interactions among environmental factors. Estimating model parameters remains a significant challenge in runoff modeling for ungauged catchments. This research evaluates the Soil and Water Assessment Tool's capacity to simulate hydrological behaviors in the Tha Chin River Basin with an emphasis on runoff predictions from the regionalization of hydrological parameters of the gauged basin, Mae Khlong River Basin.
View Article and Find Full Text PDFHandling missing values is a critical component of the data processing in hydrological modeling. The key objective of this research is to assess statistical techniques (STs) and artificial intelligence-based techniques (AITs) for imputing missing daily rainfall values and recommend a methodology applicable to the mountainous terrain of northern Thailand. In this study, 30 years of daily rainfall data was collected from 20 rainfall stations in northern Thailand and randomly 25-35 % of data was deleted from four target stations based on Spearman correlation coefficient between the target and neighboring stations.
View Article and Find Full Text PDF