Biochem Cell Biol
October 2012
In the present study, electrophoretic mobility shift assays were used to identify temperature responsive elements in the 5' upstream region (5' UTR) of the Spirulina desD gene. Overlapping, synthetic oligonucleotides of both sense and anti-sense strands that spanned the entire 5' UTR of the gene were analyzed. The responsive DNA-binding protein complexes were identified using liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFThe present study focused on comparative proteome analyses of low- and high-temperature stresses and potential protein-protein interaction networks, constructed by using a bioinformatics approach, in response to both stress conditions.The data revealed two important points: first, the results indicate that low-temperature stress is tightly linked with oxidative stress as well as photosynthesis; however, no specific mechanism is revealed in the case of the high-temperature stress response. Second, temperature stress was revealed to be linked with nitrogen and ammonia assimilation.
View Article and Find Full Text PDFJ Biosci Bioeng
March 2010
This study addresses the importance of a heat-shock-responsive cis-acting DNA element and its transcriptional regulator, which play key roles in the regulation of the Spirulina-desD gene on exposure to high temperatures. Temperature response analysis studies showed that the AT-rich region that is located between nt -98 to -80 of the Spirulina-desD gene promoter serves as a binding site for its transcriptional regulator. LC-MS/MS analysis of the DNA-binding protein complex revealed that the amino acid sequences of the bound proteins were homologous to those of several proteins, including a DNA-binding protein, heat shock protein-90 (Hsp90 or HtpG), GroEL and various protein kinases.
View Article and Find Full Text PDF