Publications by authors named "Phuong-Y Mai"

Solid-phase extraction embedded dialysis (SPEED technology) is an innovative procedure developed to physically separate in-situ, during the cultivation, the mycelium of filament forming microorganisms, such as actinomycetes and fungi, and the XAD-16 resin used to trap the secreted specialized metabolites. SPEED consists of an external nylon cloth and an internal dialysis tube containing the XAD resin. The dialysis barrier selects the molecular weight of the trapped compounds, and prevents the aggregation of biomass or macromolecules on the XAD beads.

View Article and Find Full Text PDF

While depsidones, depsides or dibenzofuran-like compounds dominate the chemical composition of lichens, the cyanolichen Nephroma laevigatum affords a diversity of quinoid pigments represented by chlorinated anthraquinones derived from emodin and new bianthrones resulting from the homo- or heterodimerization of monomers. Bianthrones were pointed out from the dichloromethane extract by MS/MS-based molecular networking, then isolated and characterized on the basis of extensive spectroscopic analyzes and GIAO NMR shift calculation followed by CP3 analyzes.

View Article and Find Full Text PDF

The emergence of multidrug resistant bacterial pathogens and the increase of antimicrobial resistance constitutes a major health challenge, leading to intense research efforts being focused on the discovery of novel antimicrobial compounds. In this study, endophytes were isolated from different parts of plant (leaves, wood and latex) belonging to the Euphorbiaceae family and known to produce antimicrobial compounds, and chemically characterised using Molecular Network in order to discover novel antimicrobial molecules. One fungal endophyte extract obtained from latex showed significant antimicrobial activity with Minimal Inhibitory Concentration on methicillin-resistant at 16 µg/mL.

View Article and Find Full Text PDF