Publications by authors named "Phuong Thao Tran"

Article Synopsis
  • Acetylcholinesterase (AChE) is a key target for Alzheimer's disease treatment, and inhibiting it could help prevent the disease.
  • A machine-learning model, along with molecular docking and dynamics, was used to identify potential AChE inhibitors from the MedChemExpress database.
  • Two specific compounds, with PubChem IDs 130467298 and 132020434, were found to effectively inhibit AChE according to the simulations and ML predictions.*
View Article and Find Full Text PDF

Targeting acetylcholinesterase is one of the most important strategies for developing therapeutics against Alzheimer's disease. In this work, we have employed a new approach that combines machine learning models, a multi-step similarity search of the PubChem library and molecular dynamics simulations to investigate potential inhibitors for acetylcholinesterase. Our search strategy has been shown to significantly enrich the set of compounds with strong predicted binding affinity to acetylcholinesterase.

View Article and Find Full Text PDF

In this work, we report 14 novel quinazoline derivatives as immune checkpoint inhibitors, IDO1 and PD-L1. The antitumor screening of synthesized compounds on ovarian cancer cells indicated that compound V-d and V-l showed the most activity with IC values of about 5 μM. Intriguingly, compound V-d emerges as a stand out, triggering cell death through caspase-dependent and caspase-independent manners.

View Article and Find Full Text PDF

The aggregation of amyloid beta (Aβ) peptides is associated with the development of Alzheimer's disease (AD). However, there has been a growing belief that the oligomerization of Aβ species in different environments has a neurotoxic effect on the patient's brain, causing damage. It is necessary to comprehend the compositions of Aβ oligomers in order to develop medications that may effectively inhibit these neurotoxic forms that affect the nervous system of AD patients.

View Article and Find Full Text PDF

Background: Several studies have focused on the use of triptan and the risk of acute vascular events but the existence of such association is still debated and has never been quantified in patients over 65 years. To assess whether triptan use among older is associated with an increased risk of hospitalization for acute vascular events.

Methods: A propensity score-matched cohort study was designed using the French national health insurance database linked to hospital stays.

View Article and Find Full Text PDF
Article Synopsis
  • - VP39 is a crucial enzyme in the Monkeypox virus that aids in RNA replication and transcription, making it a potential target for viral inhibition.
  • - Research using molecular docking and simulations showed that several natural compounds can effectively inhibit VP39, with specific compounds (NSC 319990, NSC 196515, and NSC 376254) demonstrating similar effectiveness as the known inhibitor sinefungin.
  • - The study identified nine key residues in the VP39 protein that play significant roles in the binding of inhibitors, suggesting a pathway for developing new antiviral treatments.
View Article and Find Full Text PDF

The concentration of air pollution is gradually increasing every year so that daily skin exposure is unavoidable. Dietary supplements and topical formulations currently represent the protective strategies to guard against the effects of air pollution on the body and the skin. Unfortunately, there are not yet enough methods available to measure the effectiveness of anti-pollution products on skin.

View Article and Find Full Text PDF

RAS activation is a key determinant of breast cancer progression and metastasis. However, the role of the interaction among exosomes, RAS and microRNAs (miRNAs/miRs) in the osteolytic bone metastasis of breast cancer remains unclear. Therefore, the present study aimed to examine the role of activated RAS (KRAS, HRAS and NRAS) in the release of exosome‑mediated osteoclastogenic miRNAs and to elucidate their functional role in bone microenvironment remodeling and .

View Article and Find Full Text PDF

A series of 3,19-isopropylidene-/or arylidene-andrographolide analogs were synthesized and their structures were confirmed by NMR spectroscopic methodology. Twenty-five analogs were evaluated for their in vitro cytotoxic activity against HT-29, HepG2 and LNCaP cancer cell lines based on the sulforhodamine B (SRB) assay. Analog 2 f exhibited the most potent cytotoxic activity, with IC values of 11.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase (IDO1) is a heme-containing enzyme mainly responsible for the metabolism of tryptophan to kynurenine. To date, the IDO1 inhibitors have been developed intensively for the re-activation of the anticancer immune response. In this report, we designed, and synthesized novel 1,3-dimethyl-6-amino indazole derivatives as IDO1 inhibitors based on the structure of IDO1 active site.

View Article and Find Full Text PDF

Air pollution is increasing worldwide and skin is exposed to high levels of pollution daily, causing oxidative stress and other negative consequences. The methods used to determine oxidative stress in the skin are invasive and non-invasive label-free in vivo methods, which are severely limited. Here, a non-invasive and label-free method to determine the effect of cigarette smoke (CS) exposure on skin ex vivo (porcine) and in vivo (human) was established.

View Article and Find Full Text PDF

Aim: The current study investigated the plasma levels of angiopoietin-1/-2 and their association with clinical outcomes of sepsis.

Methods: Angiopoietin-1 and -2 levels were quantified in plasma from 105 patients with severe sepsis by ELISA.

Results: Angiopoietin-2 levels elevated according to the severity of sepsis progression.

View Article and Find Full Text PDF

Health problems associated with the amount of air pollutants are increasing worldwide. Pollution damages not only the lungs; it also has an impact on skin health and is co-responsible for the development of skin diseases. Anti-pollution products are on the rise in the cosmetic market but so far, there is no established method to directly assess the impact of pollution on the skin and to test the efficacy of anti-pollution products.

View Article and Find Full Text PDF

Background: Elevated activity of osteoclasts (OCs) is linked to osteolytic bone diseases, such as osteoporosis and rheumatoid arthritis. Developing natural anti-osteoclastogenic compounds with greater efficacy and fewer adverse effects is crucial for preventing or treating osteolytic bone diseases. N-triterpene cycloartane saponins (NTCSs) are rarely found in nature, and their inhibitory effects on OC differentiation in vitro and in vivo have not yet been explored.

View Article and Find Full Text PDF

Bone homeostasis is maintained by a combination of osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Excessive osteoclast activity is linked to several bone-related disorders, including osteoporosis and rheumatoid arthritis. Pharmacological therapy might have a number of adverse effects.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) is one of the most important drug targets for Alzheimer's disease (AD) treatment. In this work, a machine learning model was trained to rapidly and accurately screen large chemical databases for the potential inhibitors of AChE. The obtained results were then validated via in vitro enzyme assay.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) is one of the most important drug targets for Alzheimer's disease treatment. In this work, a combined approach involving machine-learning (ML) model and atomistic simulations was established to predict the ligand-binding affinity to AChE of the natural compounds from VIETHERB database. The trained ML model was first utilized to rapidly and accurately screen the natural compound database for potential AChE inhibitors.

View Article and Find Full Text PDF

The spread of severe acute respiratory syndrome coronavirus 2 novel coronavirus (SARS-CoV-2) worldwide has caused the coronavirus disease 2019 (COVID-19) pandemic. A hundred million people were infected, resulting in several millions of death worldwide. In order to prevent viral replication, scientists have been aiming to prevent the biological activity of the SARS-CoV-2 main protease (3CL pro or Mpro).

View Article and Find Full Text PDF

-derived products are expected to exhibit anti-diabetes properties. Natural dipterocarpol (1) was isolated from collected in Quang Nam province, Vietnam; afterwards, 20 derivatives including 13 oxime esters (2 and 3a-3m) and 7 lactones (4, 5, 6a-6e) were semi-synthesised. Their inhibitory effects towards diabetes-related proteins were investigated experimentally (α-glucosidase) and computationally (3W37, 3AJ7, and PTP1B).

View Article and Find Full Text PDF

iridoids are promising anti-diabetic inhibitors towards α-glucosidase protein (PDB-3W37) and oligo-1,6-glucosidase protein (PDB-3AJ7). Five catalpol iridoids (1, 2, 10, 13, 14) were isolated from mangrove plant , and their derivatives (3, 4, 5, 6, 7, 8, 9, 11, 12, 15) were obtained from reduction, acetylation, -alkylation, acetonisation, or hydrolysation starting from naturally isolated compounds. They were identified by spectral methods such as IR, MS, and 1D and 2D NMR.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) play a pivotal role in tumor progression by mediating intercellular communication in the tumor microenvironment (TME). Syntenin-1 induces malignant tumor progression in various types of human cancers, including human lung cancer and regulates biogenesis of sEVs. However, the function of syntenin-1-regulated sEVs and miRNAs in sEVs remains to be elucidated.

View Article and Find Full Text PDF

As part of our continuous program to identify new potential candidates for controlling osteolytic bone diseases from natural products, the alkaloid fraction of barley ( var. ) grass (HVA) significantly inhibited RANKL-induced osteoclast formation and protected mice from LPS-induced bone loss. A phytochemical investigation of HVA afforded nine indole alkaloids, including one new compound [hordeumin A ()] and eight known analogues (-).

View Article and Find Full Text PDF

The winged-helix domain of the methyl methanesulfonate and ultraviolet-sensitive 81 (MUS81) is a potential cancer drug target. In this context, marine fungi compounds were indicated to be able to prevent MUS81 structure via atomistic simulations. Eight compounds such as (), (), (), (), (), (), () and () were indicated that they are able to prevent the conformation of MUS81 via forming a strong binding affinity to the enzyme via perturbation approach.

View Article and Find Full Text PDF

Phytochemical investigation of Citrus unshiu peels led to the isolation of eight new flavonols (7-9, 11-15) and sixteen known compounds (1-6, 10, 16-24). Their structures were elucidated using spectroscopic analysis (1D, 2D NMR, and HR-MS). Besides, all isolated compounds (1-24) were evaluated for their inhibitory effects on receptor activator of RANKL-induced osteoclastogenesis in BMMs.

View Article and Find Full Text PDF

In the present study, a series of 6-substituted aminoindazole derivatives were designed, synthesized, and evaluated for bio-activities. The compounds were initially designed as indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors based on the structural feature of five IDO1 inhibitors, which are currently on clinical trials, and the important anticancer activity of the indazole scaffold. One of them, compound -(4-fluorobenzyl)-1,3-dimethyl-1-indazol-6-amine (36), exhibited a potent anti-proliferative activity with an IC value of 0.

View Article and Find Full Text PDF