DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs).
View Article and Find Full Text PDFUnlabelled: Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets.
View Article and Find Full Text PDFObjective: Intestinal metaplasia (IM) is a premalignant stage that poses a greater risk for subsequent gastric cancer (GC). However, factors regulating IM to GC progression remain unclear. Previously, activated DNA damage response (DDR) signalling factors were shown to engage tumour-suppressive networks in premalignant lesions.
View Article and Find Full Text PDFIntroduction: Determining the optimal time to vaccinate is important for influenza vaccination programmes. Here, we assessed the temporal characteristics of influenza epidemics in the Northern and Southern hemispheres and in the tropics, and discuss their implications for vaccination programmes.
Methods: This was a retrospective analysis of surveillance data between 2000 and 2014 from the Global Influenza B Study database.
The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1) was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day) for five days prior to infection demonstrated an antiviral activity (70% survival) against H1N1 infection.
View Article and Find Full Text PDF3D8 single chain variable fragment (scFv) is a recombinant monoclonal antibody with nuclease activity that was originally isolated from autoimmune-prone MRL mice. In a previous study, we analyzed the nuclease activity of 3D8 scFv and determined that a HeLa cell line expressing 3D8 scFv conferred resistance to herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV). In this study, we demonstrate that 3D8 scFv could be delivered to target tissues and cells where it exerted a therapeutic effect against PRV.
View Article and Find Full Text PDFThe protein 3D8 single-chain variable fragment (3D8 scFv) has potential anti-viral activity due to its ability to penetrate into cells and hydrolyze nucleic acids. Probiotic Lactobacillus paracasei engineered to secrete 3D8 scFv for oral administration was used to test the anti-viral effects of 3D8 scFv against gastrointestinal virus infections. We found that injection of 3D8 scFv into the intestinal lumen resulted in the penetration of 3D8 scFv into the intestinal villi and lamina propria.
View Article and Find Full Text PDF