Am J Physiol Cell Physiol
December 2020
The myosin super-relaxed state (SRX) in skeletal muscle is hypothesized to play an important role in regulating muscle contractility and thermogenesis in humans but has only been examined in model organisms. Here we report the first human skeletal muscle SRX measurements, using quantitative epifluorescence microscopy of fluorescent 2'/3'--(-methylanthraniloyl) ATP (mantATP) single-nucleotide turnover. Myosin heavy chain (MHC) isoform expression was determined using gel electrophoresis for each permeabilized vastus lateralis fiber, to allow for novel comparisons of SRX between fiber types.
View Article and Find Full Text PDFActin's interactions with myosin and other actin-binding proteins are essential for cellular viability in numerous cell types, including muscle. In a previous high-throughput time-resolved FRET (TR-FRET) screen, we identified a class of compounds that bind to actin and affect actomyosin structure and function. For clinical utility, it is highly desirable to identify compounds that affect skeletal and cardiac muscle differently.
View Article and Find Full Text PDFThe recent discovery that myosin has two distinct states in relaxed muscle-disordered relaxed (DRX) and super-relaxed (SRX)-provides another factor to consider in our fundamental understanding of the aging mechanism in skeletal muscle, since myosin is thought to be a potential contributor to dynapenia (age-associated loss of muscle strength independent of atrophy). The primary goal of this study was to determine the effects of age on DRX and SRX states and to examine their sex specificity. We have used quantitative fluorescence microscopy of the fluorescent nucleotide analog 2'/3'-O-(N-methylanthraniloyl) ATP (mantATP) to measure single-nucleotide turnover kinetics of myosin in skinned skeletal muscle fibers under relaxing conditions.
View Article and Find Full Text PDFNMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation.
View Article and Find Full Text PDFMol Genet Metab
March 2010
Robertsonian translocations (RTs) are amongst the most common chromosome abnormalities, but being essentially balanced are not usually associated with phenotypic abnormality. Despite being dicentric, RTs are almost always transmitted stably through cell division without chromosome breakage. We have investigated spontaneous fission of der(13;15)(q10;q10) chromosomes in eight individuals from two unrelated kindreds with a view to assessing clinical significance and to seek an explanation for the peculiar heritable instability displayed by these chromosomes.
View Article and Find Full Text PDFThe introduction of molecular techniques in conjunction with classical cytogenetic methods has in recent years greatly improved the diagnostic potential for chromosomal abnormalities. In particular, microarray-comparative genomic hybridization (CGH) based on the use of BAC clones promises a sensitive strategy for the detection of DNA copy-number changes on a genomewide scale, offering a resolution as high as >30,000 "bands" (as defined by the number of BACs within the currently highest-density BAC array) [Ishkanian et al., 2004].
View Article and Find Full Text PDFCentromere (centric) fission, also known as transverse or lateral centric misdivision, has been defined as the splitting of one functional centromere of a metacentric or submetacentric chromosome to produce two derivative centric chromosomes. It has been observed in a range of organisms and has been ascribed an important role in karyotype evolution; however, the underlying mechanisms remain unknown. We have investigated four cases of apparent centric fission in humans.
View Article and Find Full Text PDFCharcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) are the two most common peripheral neuropathies, with incidences of about 1 in 2,500. Several techniques can be used to detect the typical 1.5-Mb duplication or deletion associated with these respective conditions, but none combines simplicity with high sensitivity.
View Article and Find Full Text PDF