Pluronic F-68, an 80% hydrophilic member of the Pluronic family of polyethylene-polypropylene-polyethylene tri-block copolymers, protects non-neuronal cells from traumatic injuries and rescues hippocampal neurons from excitotoxic and oxidative insults. F-68 interacts directly with lipid membranes and restores membrane function after direct membrane damage. Here, we demonstrate the efficacy of Pluronic F-68 in rescuing rat hippocampal neurons from apoptosis after oxygen-glucose deprivation (OGD).
View Article and Find Full Text PDFPhospholipases A2 (PLA2s) belong to a superfamily of enzymes responsible for hydrolyzing the sn-2 fatty acids of membrane phospholipids. These enzymes are known to play multiple roles for maintenance of membrane phospholipid homeostasis and for production of a variety of lipid mediators. Over 20 different types of PLA2s are present in the mammalian cells, and in snake and bee venom.
View Article and Find Full Text PDFIncrease in oxidative stress has been postulated to play an important role in the pathogenesis of a number of neurodegenerative diseases including Alzheimer's disease. There is evidence for involvement of amyloid-beta peptide (Abeta) in mediating the oxidative damage to neurons. Despite yet unknown mechanism, Abeta appears to exert action on the ionotropic glutamate receptors, especially the N-methyl-D-aspartic acid (NMDA) receptor subtypes.
View Article and Find Full Text PDFMitochondrial dysfunction has been implicated in the pathophysiology of Alzheimer's disease (AD) brains. To unravel the mechanism(s) underlying this dysfunction, we demonstrate that phospholipases A2 (PLA2s), namely the cytosolic and the calcium-independent PLA2s (cPLA2 and iPLA2), are key enzymes mediating oligomeric amyloid-beta peptide (Abeta(1-42))-induced loss of mitochondrial membrane potential and increase in production of reactive oxygen species from mitochondria in astrocytes. Whereas the action of iPLA2 is immediate, the action of cPLA2 requires a lag time of approximately 12-15 min, probably the time needed for initiating signaling pathways for the phosphorylation and translocation of cPLA2 to mitochondria.
View Article and Find Full Text PDFThe present study investigated the changes in the expression of regulators of G-protein-coupled signaling proteins RGS2, 7 and 8 in gerbil hippocampus to better understand alterations of G-protein-coupled receptors signaling after cerebral ischemia. In situ hybridization revealed a transient, robust early increase in RGS7 mRNA levels in the dentate gyrus after ischemia. RGS8 mRNA expression started to increase at a later time point in the CA3 region but no changes were found for RGS2.
View Article and Find Full Text PDFIncreased oxidative stress has been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In recent years, there has been increasing interest in investigating polyphenols from botanical source for possible neuroprotective effects against neurodegenerative diseases. In this study, we investigated the mechanisms underlying the neuroprotective effects of curcumin, a potent polyphenol antioxidant enriched in tumeric.
View Article and Find Full Text PDFPlant polyphenols are dietary components that exert a variety of biochemical and pharmacological effects. Recently, considerable interest has been focused on polyphenols because of their antioxidant, anti-inflammatory, and antiproliferative activities. Oxidative stress is thought to be a key event in the pathogenesis of cerebral ischemia.
View Article and Find Full Text PDF