Despite medicinal advances, cancer is still a big problem requiring better diagnostic and treatment tools. Magnetic nanoparticle (MNP)-based nanosystems for multiple-purpose applications were developed for these unmet needs. This study fabricated novel trifunctional MNPs of FeO@PLA-PEG for drug release, MRI and magnetic fluid hyperthermia.
View Article and Find Full Text PDFMagnetic inductive heating (MIH) has been a topic of great interest because of its potential applications, especially in biomedicine. In this paper, the parameters characteristic for magnetic inductive heating power including maximum specific loss power (SLP), optimal nanoparticle diameter (D) and its width (ΔD) are considered as being dependent on magnetic nanoparticle anisotropy (K). The calculated results suggest 3 different Néel-domination (N), overlapped Néel/Brownian (NB), and Brownian-domination (B) regions.
View Article and Find Full Text PDFTargeting delivery system use natural drugs for tumor cells is an appealing platform help to reduce the side effects and enhance the therapeutic effects of the drug. In this study, we synthesized curcumin (Cur) loaded (D, L Poly lactic - Poly ethylenglycol) micelle (Cur/PLA-PEG) with the ratio of PLA/PEG of 3:1 2:1 1:1 1:2 and 1:3 (w/w) and another micelle modified by folate (Cur/PLA-PEG-Fol) for targeting cancer therapy. The PLA-PEG copolymer was synthesized by ring opening polymerization method.
View Article and Find Full Text PDF