Publications by authors named "Phonphimon Wongthida"

Antibody-drug conjugates (ADC) achieve targeted drug delivery to a tumor and have demonstrated clinical success in many tumor types. The activity and safety profile of an ADC depends on its construction: antibody, payload, linker, and conjugation method, as well as the number of payload drugs per antibody [drug-to-antibody ratio (DAR)]. To allow for ADC optimization for a given target antigen, we developed Dolasynthen (DS), a novel ADC platform based on the payload auristatin hydroxypropylamide, that enables precise DAR-ranging and site-specific conjugation.

View Article and Find Full Text PDF

In our clinical trials of oncolytic vesicular stomatitis virus expressing interferon beta (VSV-IFNβ), several patients achieved initial responses followed by aggressive relapse. We show here that VSV-IFNβ-escape tumors predictably express a point-mutated CSDE1 form of the RNA-binding Cold Shock Domain-containing E1 protein, which promotes escape as an inhibitor of VSV replication by disrupting viral transcription. Given time, VSV-IFNβ evolves a compensatory mutation in the P/M Inter-Genic Region which rescues replication in CSDE1 cells.

View Article and Find Full Text PDF

Enhancing the immunogenicity of tumor-associated antigens would represent a major advance for anti-tumor vaccination strategies. Here, we investigated structure-directed antigen destabilization as a strategy to improve the degradation, immunogenic epitope presentation, and T cell activation against a vesicular stomatitis virus (VSV)-encoded tumor antigen. We used the crystal structure of the model antigen ovalbumin to identify charge-disrupting amino acid mutations that were predicted to decrease the stability of the protein.

View Article and Find Full Text PDF

The application of adoptive T cell therapies, including those using chimeric antigen receptor (CAR)-modified T cells, to solid tumors requires combinatorial strategies to overcome immune suppression associated with the tumor microenvironment. Here we test whether the inflammatory nature of oncolytic viruses and their ability to remodel the tumor microenvironment may help to recruit and potentiate the functionality of CAR T cells. Contrary to our hypothesis, VSVmIFNβ infection is associated with attrition of murine EGFRvIII CAR T cells in a B16EGFRvIII model, despite inducing a robust proinflammatory shift in the chemokine profile.

View Article and Find Full Text PDF

Background: Diffuse midline glioma, formerly DIPG (diffuse intrinsic pontine glioma), is the deadliest pediatric brainstem tumor with median survival of less than one year. Here, we investigated (i) whether direct delivery of adenovirus-expressing cluster of differentiation (CD)40 ligand (Ad-CD40L) to brainstem tumors would induce immune-mediated tumor clearance and (ii) if so, whether therapy would be associated with a manageable toxicity due to immune-mediated inflammation in the brainstem.

Methods: Syngeneic gliomas in the brainstems of immunocompetent mice were treated with Ad-CD40L and survival, toxicity, and immune profiles determined.

View Article and Find Full Text PDF

APOBEC3B, an anti-viral cytidine deaminase which induces DNA mutations, has been implicated as a mediator of cancer evolution and therapeutic resistance. Mutational plasticity also drives generation of neoepitopes, which prime anti-tumor T cells. Here, we show that overexpression of APOBEC3B in tumors increases resistance to chemotherapy, but simultaneously heightens sensitivity to immune checkpoint blockade in a murine model of melanoma.

View Article and Find Full Text PDF

Background: Immunotherapy has shown remarkable clinical promise in the treatment of various types of cancers. However, clinical benefits derive from a highly inflammatory mechanism of action. This presents unique challenges for use in pediatric brainstem tumors including diffuse intrinsic pontine glioma (DIPG), since treatment-related inflammation could cause catastrophic toxicity.

View Article and Find Full Text PDF

Tumor cells frequently evade applied therapies through the accumulation of genomic mutations and rapid evolution. In the case of oncolytic virotherapy, understanding the mechanisms by which cancer cells develop resistance to infection and lysis is critical to the development of more effective viral-based platforms. Here, we identify APOBEC3 as an important factor that restricts the potency of oncolytic vesicular stomatitis virus (VSV).

View Article and Find Full Text PDF

Virotherapies are maturing in the clinical setting. Adenoviruses (Ad) are excellent vectors for the manipulability and tolerance of transgenes. Poor tumor selectivity, off-target sequestration, and immune inactivation hamper clinical efficacy.

View Article and Find Full Text PDF

The ORF3 accessory protein has been shown to impede reverse genetics of cell-culture-adapted porcine epidemic diarrhea virus (PEDV). Its absence or truncated variants are also associated with viral attenuation in vivo. Here, three ORF3 variants (ORF3, ORF3 and ORF3) and their truncated counterparts were investigated for their regulatory role in recovery of cell-adapted PEDV in vitro.

View Article and Find Full Text PDF

The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context.

View Article and Find Full Text PDF

Vesicular stomatitis virus (VSV) is highly immunogenic and able to stimulate both innate and adaptive immune responses. However, its ability to induce adverse effects has held back the use of VSV as a potential vaccine vector. In this study we developed VSV-ΔP, a safe yet potent replication-defective recombinant VSV in which the phosphoprotein (P) gene was deleted.

View Article and Find Full Text PDF

Emergence of the porcine epidemic diarrhea virus (PEDV) as a global threat to the swine industry underlies the urgent need for deeper understanding of this virus. To date, we have yet to identify functions for all the major gene products, much less grasp their implications for the viral life cycle and pathogenic mechanisms. A major reason is the lack of genetic tools for studying PEDV.

View Article and Find Full Text PDF

Co-infection of influenza A and B viruses (IAV and IBV) results in marked decreases in IAV replication. Multiple mechanisms have been proposed for this phenomenon. Recently, we reported that IBV nucleoprotein (BNP) alone can suppress IAV replication and proposed an inhibition model in which BNP binds IAV nucleoprotein (ANP) and disrupts IAV polymerase complexes.

View Article and Find Full Text PDF

Porcine epidemic diarrhoea virus (PEDV) causes acute diarrhoea and dehydration in swine of all ages, with significant mortality in neonatal pigs. The recent rise of PEDV outbreaks in Asia and North America warrants an urgent search for effective vaccines. However, PEDV vaccine research has been hampered by difficulties in isolating and propagating the virus in mammalian cells, thereby complicating the recovery of infectious PEDV using a full-length infectious clone.

View Article and Find Full Text PDF

Oncolytic virotherapy offers the potential to treat tumors both as a single agent and in combination with traditional modalities such as chemotherapy and radiotherapy. Here we describe an effective, fully systemic treatment regimen, which combines virotherapy, acting essentially as an adjuvant immunotherapy, with adoptive cell transfer (ACT). The combination of ACT with systemic administration of a vesicular stomatitis virus (VSV) engineered to express the endogenous melanocyte antigen glycoprotein 100 (gp100) resulted in regression of established melanomas and generation of antitumor immunity.

View Article and Find Full Text PDF

Multiple intravenous injections of a cDNA library, derived from human melanoma cell lines and expressed using the highly immunogenic vector vesicular stomatitis virus (VSV), cured mice with established melanoma tumors. Successful tumor eradication was associated with the ability of mouse lymphoid cells to mount a tumor-specific CD4(+) interleukin (IL)-17 recall response in vitro. We used this characteristic IL-17 response to screen the VSV-cDNA library and identified three different VSV-cDNA virus clones that, when used in combination but not alone, achieved the same efficacy against tumors as the complete parental virus library.

View Article and Find Full Text PDF

Effective cancer immunotherapy requires the release of a broad spectrum of tumor antigens in the context of potent immune activation. We show here that a cDNA library of normal tissue, expressed from a highly immunogenic viral platform, cures established tumors of the same histological type from which the cDNA library was derived. Immune escape occurred with suboptimal vaccination, but tumor cells that escaped the immune pressure were readily treated by second-line virus-based immunotherapy.

View Article and Find Full Text PDF

We have shown that the antitumor activity of vesicular stomatitis virus (VSV) against B16ova tumors in C57BL/6 mice is predominantly due to innate antiviral immune effectors. We have also shown that the innate immune-activating properties of VSV can be harnessed to prime adaptive T-cell responses against a tumor-associated antigen (TAA) if the virus is engineered to express the cDNA of the antigen. Here, we show that the combination of VSV expressing OVA as a model tumor antigen, along with adoptive T-cell therapy targeted against the same antigen, is superior to either treatment alone and induces systemic antitumor activity.

View Article and Find Full Text PDF

Despite having potent oncolytic activity, in vitro, direct intratumoral injection of oncolytic vesicular stomatitis virus (VSV) into established AE17ova mesothelioma tumors in C57Bl/6 mice had no therapeutic effect. During studies to combine systemic cyclophosphamide (CPA) with VSV to suppress the innate immune reaction against VSV, we observed that CPA alone had highly significant antitumor effects in this model. However, against our expectations, the combination of CPA and VSV consistently reduced therapeutic efficacy compared to CPA alone, despite the fact that the combination increased intratumoral VSV titers.

View Article and Find Full Text PDF

We show here, for the first time to our knowledge, that the antitumor therapy of oncolytic vesicular stomatitis virus (VSV) in the B16ova model depends upon signaling through myeloid differentiation primary response gene 88 (MyD88) in host cells. VSV-mediated therapy of B16ova tumors was abolished in MyD88(-/-) mice despite generation of antigen-specific T cell responses similar to those in immune-competent mice. Mice defective in only toll-like receptor 4 (TLR4), TLR7, or interleukin 1 (IL-1) signaling retained VSV-induced therapy, suggesting that multiple, redundant pathways of innate immune activation by the virus contribute to antitumor immune reactivity.

View Article and Find Full Text PDF

Innate immune effector mechanisms triggered by oncolytic viruses may contribute to the clearance of both infected and uninfected tumor cells in immunocompetent murine hosts. Here, we developed an in vitro tumor cell/bone marrow coculture assay and used it to dissect innate immune sensor and effector responses to intratumoral vesicular stomatitis virus (VSV). We found that the type III IFN interleukin-28 (IL-28) was induced by viral activation of innate immune-sensing cells, acting as a key mediator of VSV-mediated virotherapy of B16ova melanomas.

View Article and Find Full Text PDF

Oncolytic virotherapy can be achieved in two ways: (1) by exploiting an innate ability of certain viruses to selectively replicate in tumor tissues, and (2) by using viruses to deliver toxic or immunostimulatory genes to tumors. Vesicular stomatitis virus (VSV) selectively replicates in tumors lacking adequate type I interferon response. The efficacy of oncolytic virotherapy using VSV against B16 melanomas in C57BL/6 mice is dependent on CD8(+) T and natural killer cells.

View Article and Find Full Text PDF

Our preclinical and clinical trials using a replication-defective adenoviral vector expressing IFN-beta have shown promising results for the treatment of malignant mesothelioma. Based on the hypotheses that a replication-competent vesicular stomatitis virus (VSV) oncolytic vector would transduce more tumor cells in vivo, that coexpression of the immunostimulatory IFN-beta gene would enhance the immune-based effector mechanisms associated both with regression of mesotheliomas and with VSV-mediated virotherapy, and that virus-derived IFN-beta would add further safety to the VSV platform, we tested the use of IFN-beta as a therapeutic transgene expressed from VSV as a novel treatment for mesothelioma. VSV-IFN-beta showed significant therapy against AB12 murine mesotheliomas in the context of both local and locoregional viral delivery.

View Article and Find Full Text PDF