Correctional institutions are a crucial hotspot amplifying SARS-CoV-2 spread and disease disparity in the U.S. In the California state prison system, multiple massive outbreaks have been caused by transmission between prisons.
View Article and Find Full Text PDFIntroduction: Biomarkers of TDP-43 pathology are needed to distinguish frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) from phenotypically related disorders. While normal physiological TDP-43 is not a promising biomarker, low-resolution techniques have suggested truncated forms of TDP-43 may be specific to TDP-43 pathology. To advance biomarker efforts for FTLD-TDP, we employed a high-resolution structural technique to characterize TDP-43 post-translational modifications in FTLD-TDP.
View Article and Find Full Text PDFThe NuA4 lysine acetyltransferase complex acetylates histone and nonhistone proteins and functions in transcription regulation, cell cycle progression, and DNA repair. NuA4 harbors an interesting duality in that its catalytic module can function independently and distinctly as picNuA4. At the molecular level, picNuA4 anchors to its bigger brother via physical interactions between the C-terminus of Epl1 and the HSA domain of Eaf1, the NuA4 central scaffolding subunit.
View Article and Find Full Text PDFThe explosive outbreaks of COVID-19 seen in congregate settings such as prisons and nursing homes, has highlighted a critical need for effective outbreak prevention and mitigation strategies for these settings. Here we consider how different types of control interventions impact the expected number of symptomatic infections due to outbreaks. Introduction of disease into the resident population from the community is modeled as a stochastic point process coupled to a branching process, while spread between residents is modeled via a deterministic compartmental model that accounts for depletion of susceptible individuals.
View Article and Find Full Text PDFContext: Islet amyloid is a feature of β-cell failure in type 2 diabetes (T2D) and type 1 diabetes (T1D) recipients of islet transplants. Islet amyloid contains islet amyloid polypeptide (IAPP; amylin), a circulating peptide that is produced in β cells by processing of its precursor, proIAPP1-67, via an intermediate form, proIAPP1-48. Elevated proinsulin to C-peptide ratios in the plasma of persons with diabetes suggest defects in β-cell prohormone processing.
View Article and Find Full Text PDFDNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs).
View Article and Find Full Text PDFChromatin remodeling complexes cooperate to regulate gene promoters and to define chromatin neighborhoods. Here, we identified genetic and functional connections between two silencing-related chromatin factors in the maintenance of native heterochromatic structures and nucleosome composition at promoters. Building on a previously reported link between the histone chaperone Asf1 and the Yaf9 subunit of the SWR1-C chromatin remodeler, we found that ASF1 broadly interacted with genes encoding for SWR1-C subunits.
View Article and Find Full Text PDFBackground: Vitiligo significantly affects a person's health-related quality of life (HRQL). Although a small number of generic, and disease-specific, dermatologic HRQL measures exist, currently no vitiligo-specific instrument is available to capture disease-targeted concerns and issues.
Objective: We sought to develop and validate a vitiligo-specific self-report instrument for HRQL.
Dermatol Online J
November 2010
We present a 40-year-old man with erythematous-to-violaceous, broken, reticulated patches on the upper chest, back, and extremities, which is consistent with livedo racemosa. The cutaneous findings appeared after an increase in dilantin dose and subsequently improved after a reduction in dilantin dose. Furthermore, antinuclear antibodies and antihistone antibodies were detected.
View Article and Find Full Text PDFPemphigoid gestationis is a rare autoimmune blistering disease of pregnancy. It is characterized by pruritic, urticarial plaques with the development of tense vesicles and bullae within the lesions. Pemphigoid gestationis has been associated with premature delivery, small-for-gestational-age infants.
View Article and Find Full Text PDFChromatin structure is important for the compaction of eukaryotic genomes, thus chromatin modifications play a fundamental role in regulating many cellular processes. The coordinated activities of various chromatin-remodelling and -modifying complexes are crucial in maintaining distinct chromatin neighbourhoods, which in turn ensure appropriate gene expression, as well as DNA replication, repair, and recombination. SWR1-C is an ATP-dependent histone deposition complex for the histone variant H2A.
View Article and Find Full Text PDFA 48-year-old man presented with a two-year history of a generalized, pruritic eruption that was associated with numerous, dome-shaped papules and nodulocystic lesions. Biopsy specimens have shown keratoacanthomas and a lichenoid dermatitis. Evaluation for malignant conditions has been negative.
View Article and Find Full Text PDFWe report three children with hypohidrotic ectodermal dysplasia (HED), which includes two sisters with unaffected parents (and therefore likely autosomal recessive inheritance of HED) and an unrelated boy. Each patient presented with hypohidrosis, sparse hair, oligodontia with conical teeth, periorbital hyperpigmentation, eczematous dermatitis, and facial features that include frontal bossing, a saddle nose, and prominent lips. HED is caused by defects in the ectodysplasin signal transduction pathway.
View Article and Find Full Text PDFThere is increasing evidence that neuron death in neurodegenerative diseases, such as Parkinson's disease, is due to the activation of programmed cell death. However, the upstream mediators of cell death remain largely unknown. One approach to the identification of upstream mediators is to perform gene expression analysis in disease models.
View Article and Find Full Text PDFNumerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene.
View Article and Find Full Text PDFStress-induced eukaryotic translation initiation factor 2 (eIF2) alpha phosphorylation paradoxically increases translation of the metazoan activating transcription factor 4 (ATF4), activating the integrated stress response (ISR), a pro-survival gene expression program. Previous studies implicated the 5' end of the ATF4 mRNA, with its two conserved upstream ORFs (uORFs), in this translational regulation. Here, we report on mutation analysis of the ATF4 mRNA which revealed that scanning ribosomes initiate translation efficiently at both uORFs and ribosomes that had translated uORF1 efficiently reinitiate translation at downstream AUGs.
View Article and Find Full Text PDFTransient phosphorylation of the alpha-subunit of translation initiation factor 2 (eIF2alpha) represses translation and activates select gene expression under diverse stressful conditions. Defects in the eIF2alpha phosphorylation-dependent integrated stress response impair resistance to accumulation of malfolded proteins in the endoplasmic reticulum (ER stress), to oxidative stress and to nutrient deprivations. To study the hypothesized protective role of eIF2alpha phosphorylation in isolation of parallel stress signaling pathways, we fused the kinase domain of pancreatic endoplasmic reticulum kinase (PERK), an ER stress-inducible eIF2alpha kinase that is normally activated by dimerization, to a protein module that binds a small dimerizer molecule.
View Article and Find Full Text PDFPhosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) on serine 51 is effected by specific stress-activated protein kinases. eIF2alpha phosphorylation inhibits translation initiation promoting a cytoprotective gene expression program known as the integrated stress response (ISR). Stress-induced activation of GADD34 feeds back negatively on this pathway by promoting eIF2alpha dephosphorylation, however, GADD34 mutant cells retain significant eIF2alpha-directed phosphatase activity.
View Article and Find Full Text PDFEukaryotic cells respond to unfolded proteins in their endoplasmic reticulum (ER stress), amino acid starvation, or oxidants by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). This adaptation inhibits general protein synthesis while promoting translation and expression of the transcription factor ATF4. Atf4(-/-) cells are impaired in expressing genes involved in amino acid import, glutathione biosynthesis, and resistance to oxidative stress.
View Article and Find Full Text PDF