Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis, necrosis, or autophagy.
View Article and Find Full Text PDFObjective: The aim of the present work was the detection of Mitochondrial dysfunction of Huntington's disease (HD).
Methods: We investigated muscle and muscle mitochondria of 14- to 16-week-old R6/2 mice in comparison with wild-type mice.
Results: Atrophic fibers, increased fuchsinophilic aggregates, and reduced cytochrome c oxidase (15%) were found in HD muscle.
Abstract Huntingtin is a large, multi-domain protein of unknown function in the brain. An abnormally elongated polyglutamine stretch in its N-terminus causes Huntington's disease (HD), a progressive neurodegenerative disorder. Huntingtin has been proposed to play a functional role in membrane trafficking via proteins involved in endo- and exocytosis.
View Article and Find Full Text PDFRap1 belongs to the highly conserved Ras subfamily of small GTPases. In Drosophila, Rap1 plays a critical role in many different morphogenetic processes, but the molecular mechanisms executing its function are unknown. Here, we demonstrate that Canoe (Cno), the Drosophila homolog of mammalian junctional protein AF-6, acts as an effector of Rap1 in vivo.
View Article and Find Full Text PDFTrends Biochem Sci
August 2003
Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormally elongated polyglutamine (polyQ) tract in the large protein huntingtin (htt). Currently, both the normal function of htt in neurons and the molecular mechanism by which the expanded polyQ sequence in htt causes selective neurodegeneration remain elusive. Research in past years has identified several htt-interacting proteins such as htt-interacting protein 1, Src homology region 3-containing Grb2-like protein 3, protein kinase C and casein kinase substrate in neurons 1, htt-associated protein 1, postsynaptic density-95, FIP-2 (for 14.
View Article and Find Full Text PDF