Publications by authors named "Phoebe Allan"

Controllable sorption selectivity in zeolites is crucial for their application in catalysis, gas separation and ion-exchange. Whilst existing approaches to achieving sorption selectivity with natural zeolites typically rely on screening for specific geological deposits, here we develop partial interzeolite transformation as a straightforward and highly tuneable method to achieve sorption selectivity forming dual-phase composites with simultaneous control of both phase-ratio and morphology. The dual-cation (strontium and caesium) exchange properties of a series of granular mordenite/zeolite P composites formed from a parent natural mordenite material are demonstrated in complex, industrially relevant multi-ion environments pertinent to nuclear waste management.

View Article and Find Full Text PDF

Lithium ruthenium oxide (LiRuO) is an archetypal lithium rich cathode material (LRCM) with both cation and anion redox reactions (ARRs). Commonly, the instability of oxygen redox activities has been regarded as the root cause of its performance degradation in long-term operation. However, we find that not triggering ARRs does not improve and even worsens its cyclability due to the detrimental strain accumulation induced by Ru redox activities.

View Article and Find Full Text PDF

Hard carbons are the leading candidate anode materials for sodium-ion batteries. However, the sodium-insertion mechanisms remain under debate. Here, employing a novel analysis of operando and ex situ pair distribution function (PDF) analysis of total scattering data, supplemented by information on the local electronic structure provided by operando Na solid-state NMR, we identify the local atomic environments of sodium stored within hard carbon and provide a revised mechanism for sodium storage.

View Article and Find Full Text PDF

Binary metal oxides are attractive anode materials for lithium-ion batteries. Despite sustained effort into nanomaterials synthesis and understanding the initial discharge mechanism, the fundamental chemistry underpinning the charge and subsequent cycles-thus the reversible capacity-remains poorly understood. Here, we use in operando X-ray pair distribution function analysis combining with our recently developed analytical approach employing Metropolis Monte Carlo simulations and non-negative matrix factorisation to study the charge reaction thermodynamics of a series of Fe- and Mn-oxides.

View Article and Find Full Text PDF

An experimental technique is described for the collection of time-resolved X-ray diffraction information from a complete commercial battery cell during discharging or charging cycles. The technique uses an 80 × 80 pixel 2D energy-discriminating detector in a pinhole camera geometry which can be used with a polychromatic X-ray source. The concept was proved in a synchrotron X-ray study of commercial alkaline Zn-MnO AA size cells.

View Article and Find Full Text PDF
Article Synopsis
  • In situ electrochemical cycling combined with total scattering measurements can reveal structural information across different phases of battery materials during charging and discharging.
  • Poor cell design can lead to misleading data due to background interference and inhomogeneous cycling conditions.
  • A new optimized cell design improves electrochemical performance and enhances the quality of bulk characterizations, demonstrated through the study of a nanostructured LiMnO cathode which shows minimal background signal interference.
View Article and Find Full Text PDF

The alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium-tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ Sn ssNMR.

View Article and Find Full Text PDF

Carbon capture and storage (CCS) offers a possible solution to curb the CO emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty.

View Article and Find Full Text PDF

OperandoNa solid-state NMR and pair distribution function analysis experiments provide insights into the structure of hard carbon anodes in sodium-ion batteries. Capacity results from "diamagnetic" sodium ions first adsorbing onto pore surfaces, defects and between expanded layers, before pooling into larger quasi-metallic clusters/expanded carbon sheets at lower voltages.

View Article and Find Full Text PDF

Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3-x)Sb (x ≈ 0.4-0.

View Article and Find Full Text PDF

Neutron diffraction with isotopic substitution has been used to characterize the bulk liquid structure of the technologically relevant electrolyte solution, 1 M tetrapropylammonium bromide (TPA Br) in acetonitrile (acn), and of pure deuterated acetonitrile. Empirical potential structure refinement modeling procedures have been used to extract detailed structural information about solvent-solvent, solvent-ion, and ion-ion correlations. Analysis of the refined data shows the expected local dipolar conformation of acn in the pure solvent.

View Article and Find Full Text PDF

Nanoparticles of a copper-based layered coordination polymer, STAM-2, have been prepared via an ultrasound mediated transformation from a layered metal-organic framework, STAM-1. The structure of the material was then solved using pair distribution function analysis to identify the structural units present and the final structural model refined against the pair distribution function data.

View Article and Find Full Text PDF

A single-crystal to single-crystal transformable coordination polymer compound was hydrothermally synthesized. The structural rearrangement is induced by selecting a ligand that contains both strong and weaker coordinating groups. Both hydrated and dehydrated structures were determined by single crystal X-ray analysis.

View Article and Find Full Text PDF

Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

View Article and Find Full Text PDF

A unique organically-templated vanadium(IV) oxyfluoride, [pyH][V(2)O(2)F(5)] has been prepared using an ionothermal approach. This compound has a novel layered structure which may be considered as arising via condensation of previously known 'ladder-like' structural building units. This suggests that ionothermal synthesis may provide a more effective route to extended network structures in these systems than the more widely explored hydrothermal-based media.

View Article and Find Full Text PDF

Four zinc imidazolate materials has been synthesized under ionothermal conditions using ionic liquids; [Zn(C2O4)(C3N2H4)], P21/a (1); [Zn(CH3COO)(C3N2H3)], Ima2 (2); [Zn4(C3N2H4)(C3N2H3)8], P (3) and [Zn(C3N2H3)2], I41 (4). Compounds 1 and 4 have already known structures, but have been synthesised for the first time using ionothermal methods. Compounds 2 and 3 are novel and have been synthesized for the first time in this work.

View Article and Find Full Text PDF

The flexibility of the metal-organic framework Cu(2)(OH)(C(8)H(3)O(7)S)(H(2)O) x 2 H(2)O (Cu-SIP-3) toward reversible single-crystal to single-crystal transformations is demonstrated using in situ diffraction methods at variable temperature. At temperatures below a dehydration-induced phase transition (T < 370 K) the structure is confirmed as being hydrated. In the temperature range where the transition takes place (370 K < T < 405 K) no discrete, sharp Bragg peaks can be seen in the single-crystal X-ray diffraction pattern, indicating significant loss of long-range order.

View Article and Find Full Text PDF

Phosphanotriylbenzenecarboxylic acid (ptbcH(3); P(C(6)H(4)-p-CO(2)H)(3)) and its methyl phosphonium iodide derivative (mptbcH(3)I; {H(3)CP(C(6)H(4)-p-CO(2)H)(3)}I) have been used as organic building blocks in reaction with Zn(ii) salts to obtain a series of related two-dimensional coordination polymers with honeycomb-like networks. The variable coordination number and oxidation states available to phosphorus have been exploited to produce a family of related phosphine coordination materials (PCMs) using a single ligand precursor. The phosphine carboxylate trianion, ptbc(3-), reacted with Zn(ii) to form 3,3-connected undulating hexagonal sheets based on tetrahedral P and Zn nodes, where Zn-ptbc = 1 : 1.

View Article and Find Full Text PDF