Adenovirus minor coat protein VI contains a membrane-disrupting peptide that is inactive when VI is bound to hexon trimers. Protein VI must be released during entry to ensure endosome escape. Hexon:VI stoichiometry has been uncertain, and only fragments of VI have been identified in the virion structure.
View Article and Find Full Text PDFSome viruses package dsDNA together with large amounts of positively charged proteins, thought to help condense the genome inside the capsid with no evidence. Further, this role is not clear because these viruses have typically lower packing fractions than viruses encapsidating naked dsDNA. In addition, it has recently been shown that the major adenovirus condensing protein (polypeptide VII) is dispensable for genome encapsidation.
View Article and Find Full Text PDFThe Adenovirus (Ad) genome within the capsid is tightly associated with a virus-encoded, histone-like core protein-protein VII. Two other Ad core proteins, V and X/μ, also are located within the virion and are loosely associated with viral DNA. Core protein VII remains associated with the Ad genome during the early phase of infection.
View Article and Find Full Text PDFViral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses.
View Article and Find Full Text PDFSurface modification of adenovirus vectors can improve tissue-selective targeting, attenuate immunogenicity, and enable imaging of particle biodistribution, thus significantly improving therapeutic potential. Currently, surface engineering is constrained by a combination of factors, including impact on viral fitness, limited access to functionality, or incomplete control over the site of modification. Here, we report a two-step labeling process involving an initial metabolic placement of a uniquely reactive unnatural amino acid, azidohomoalanine (Aha), followed by highly specific chemical modification.
View Article and Find Full Text PDFWe have previously described a new family of mutant adenoviruses carrying different combinations of attB/attP sequences from bacteriophage PhiC31 flanking the Ad5 packaging domain. These novel helper viruses have a significantly delayed viral life cycle and a severe packaging impairment, regardless of the presence of PhiC31 recombinase. Their infectious viral titers are significantly lower (100-1000 fold) than those of control adenovirus at 36 hours post-infection, but allow for efficient packaging of helper-dependent adenovirus.
View Article and Find Full Text PDFThe molecular mechanism for packaging of the adenovirus (Ad) genome into the capsid is likely similar to that of DNA bacteriophages and herpesviruses-the insertion of viral DNA through a portal structure into a preformed prohead driven by an ATP-hydrolyzing molecular machine. It is speculated that the IVa2 protein of adenovirus is the ATPase providing the power stroke of the packaging machinery. Purified IVa2 binds ATP in vitro and, along with a second Ad protein, the L4 22-kilodalton protein (L4-22K), binds specifically to sequences in the Ad genome that are essential for packaging.
View Article and Find Full Text PDFWe demonstrate here a novel two-step "click" labeling process in which adenoviral particles are first metabolically labeled during production with unnatural azido sugars. Subsequent chemoselective modification allows access to viruses decorated with a broad array of effector functionality. Adenoviruses modified with folate, a known cancer-targeting motif, demonstrated a marked increase in gene delivery to a murine cancer cell line.
View Article and Find Full Text PDFIVa2 is an essential, multifunctional protein of adenovirus (Ad) supporting packaging of the viral genome into the capsid, assisting in assembly of the capsid, and activating Ad late transcription. A comparison of IVa2 protein sequences from different species of Adenoviridae shows conserved motifs associated with binding and hydrolysis of ATP (Walker A and B motifs). ATPases are essential proteins of bacteriophage packaging motors, and such activity may be required for Ad packaging.
View Article and Find Full Text PDFPackaging of the adenovirus (Ad) genome into a capsid is absolutely dependent upon the presence of a cis-acting region located at the left end of the genome referred to as the packaging domain. The functionally significant sequences within this domain consist of at least seven similar repeats, referred to as the A repeats, which have the consensus sequence 5' TTTG-N(8)-CG 3'. In vitro and in vivo binding studies have demonstrated that the adenovirus protein IVa2 binds to the CG motif of the packaging sequences.
View Article and Find Full Text PDFThe results of studies of Adenovirus have contributed to our basic understanding of the molecular biology of the cell. While a great body of knowledge has been developed concerning Ad gene expression, viral replication, and effects on the infected host, the molecular details of the assembly process of Adenovirus particles are largely unknown. In this article, we would like to propose a theoretical model for the packaging and assembly of Adenovirus and present an overview of the studies that have contributed to our present understanding.
View Article and Find Full Text PDFAdenovirus type 5 (Ad5) DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent on the cis-acting packaging domain located between nucleotides 230 and 380. Seven AT-rich repeats that direct packaging have been identified within this domain.
View Article and Find Full Text PDFAdenovirus (Ad) type 5 DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent upon the cis-acting packaging domain located between nucleotides 194 and 380. Seven A/T-rich repeats have been identified within this domain that direct packaging.
View Article and Find Full Text PDFThe design of drugs for treatment of virus infections and the exploitation of viruses as drugs for treatment of diseases could be made more successful by understanding the molecular mechanisms of virus-specific events. The process of assembly, and more specifically packaging of the genome into a capsid, is an obligatory step leading to future infections. To enhance our understanding of the molecular mechanism of packaging, it is necessary to characterize the viral components necessary for the event.
View Article and Find Full Text PDF