Autophagy is a critical survival factor for cancer cells, whereby it maintains cellular homeostasis by degrading damaged organelles and unwanted proteins and supports cellular biosynthesis in response to stress. Cancer cells, including hepatocellular carcinoma (HCC), are often situated in a hypoxic, nutrient-deprived and stressful microenvironment where tumor cells are yet still able to adapt and survive. However, the mechanism underlying this adaptation and survival is not well-defined.
View Article and Find Full Text PDFBackground & Aims: Advanced hepatocellular carcinoma (HCC) is a lethal malignancy with limited treatment options. Sorafenib is the only FDA-approved first-line targeted drug for advanced HCC, but its effect on patient survival is limited. Further, patients ultimately present with disease progression.
View Article and Find Full Text PDFOur previous results showed that the polysaccharides extracted from Lycium barbarum (LBP) could delay secondary degeneration of retinal ganglion cell bodies and improve the function of the retinas after partial optic nerve transection (PONT). Although the common degeneration mechanisms were believed to be shared by both neuronal bodies and axons, recently published data from slow Wallerian degeneration mutant (Wld(s)) mice supported the divergence in the mechanisms of them. Therefore, we want to determine if LBP could also delay the degeneration of axons after PONT.
View Article and Find Full Text PDFHemostasis is a major problem in surgical procedures and after major trauma. There are few effective methods to stop bleeding without causing secondary damage. We used a self-assembling peptide that establishes a nanofiber barrier to achieve complete hemostasis immediately when applied directly to a wound in the brain, spinal cord, femoral artery, liver, or skin of mammals.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.