The virus bioresistor (VBR) is a chemiresistor that directly transfers information from virus particles to an electrical circuit. Specifically, the VBR enables the label-free detection of a target protein that is recognized and bound by filamentous M13 virus particles, each with dimensions of 6 nm ( w) × 1 μm ( l), entrained in an ultrathin (∼250 nm) composite virus-polymer resistor. Signal produced by the specific binding of virus to target molecules is monitored using the electrical impedance of the VBR: The VBR presents a complex impedance that is modeled by an equivalent circuit containing just three circuit elements: a solution resistance ( R), a channel resistance ( R), and an interfacial capacitance ( C).
View Article and Find Full Text PDFAn Achilles heel inherent to all molecular display formats, background binding between target and display system introduces false positives into screens and selections. For example, the negatively charged surfaces of phage, mRNA, and ribosome display systems bind with unacceptably high nonspecificity to positively charged target molecules, which represent an estimated 35% of proteins in the human proteome. Here we report the first systematic attempt to understand why a broad class of molecular display selections fail, and then solve the underlying problem for both phage and RNA display.
View Article and Find Full Text PDFA dense virus layer, readily tailored for recognition of essentially any biomarker, was covalently attached to a gold electrode surface through a self-assembled monolayer. The resistance of this "virus electrode", Z(Re), measured in the frequency range from 2 to 500 kHz in a salt-based pH 7.2 buffer, increased when the phage particles selectively bound either an antibody or prostate-specific membrane antigen (PSMA), a biomarker for prostate cancer.
View Article and Find Full Text PDFProtein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis.
View Article and Find Full Text PDFThe highly abundant GTP binding protein elongation factor Tu (EF-Tu) fulfills multiple roles in bacterial protein biosynthesis. Phage-displayed peptides with high affinity for EF-Tu were selected from a library of approximately 4.7 x 10(11) different peptides.
View Article and Find Full Text PDF