The UBTF E210K neuroregression syndrome is caused by de novo dominant mutations in UBTF (NM_014233.3:c.628G > A, p.
View Article and Find Full Text PDFPatients with severe sickle cell disease (SCD) are candidates for gene therapy using autologous hematopoietic stem cells (HSCs), but concomitant multi-organ disease may contraindicate pretransplant conditioning with full myeloablation. We tested whether nonmyeloablative conditioning, a regimen used successfully for allogeneic bone marrow transplantation of adult SCD patients, allows engraftment of γ-globin gene-corrected cells to a therapeutic level in the Berkeley mouse model of SCD. Animals transplanted according to this regimen averaged 35% engraftment of transduced hematopoietic stem cells with an average vector copy < 2.
View Article and Find Full Text PDFSickle cell disease (SCD) can be cured by allogeneic hematopoietic stem cell transplant. However, this is only possible when a matched donor is available, making the development of gene therapy using autologous hematopoietic stem cells a highly desirable alternative. We used a culture model of human erythropoiesis to directly compare two insulated, self-inactivating, and erythroid-specific lentiviral vectors, encoding for γ-globin (V5m3-400) or a modified β-globin (βAS3-FB) for production of antisickling hemoglobin (Hb) and correction of red cell deformability after deoxygenation.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV1) vectors poorly transduce rhesus hematopoietic cells due to species-specific restriction factors, including the tripartite motif-containing 5 isoformα (TRIM5α) which targets the HIV1 capsid. We previously developed a chimeric HIV1 (χHIV) vector system wherein the vector genome is packaged with the simian immunodeficiency virus (SIV) capsid for efficient transduction of both rhesus and human CD34(+) cells. To evaluate whether χHIV vectors could efficiently transduce rhesus hematopoietic repopulating cells, we performed a competitive repopulation assay in rhesus macaques, in which half of the CD34(+) cells were transduced with standard SIV vectors and the other half with χHIV vectors.
View Article and Find Full Text PDFβ-Thalassemia major results from severely reduced or absent expression of the β-chain of adult hemoglobin (α₂β₂;HbA). Increased levels of fetal hemoglobin (α₂γ₂;HbF), such as occurs with hereditary persistence of HbF, ameliorate the severity of β-thalassemia, raising the potential for genetic therapy directed at enhancing HbF. We used an in vitro model of human erythropoiesis to assay for enhanced production of HbF after gene delivery into CD34(+) cells obtained from mobilized peripheral blood of normal adults or steady-state bone marrow from patients with β-thalassemia major.
View Article and Find Full Text PDFFetal hemoglobin (HbF) is a potent genetic modifier of the severity of beta-thalassemia and sickle cell anemia. We used an in vitro culture model of human erythropoiesis in which late-stage erythroblasts are derived directly from human CD34(+) hematopoietic cells to evaluate HbF production. This system recapitulates expression of globin genes according to the developmental stage of the originating cell source.
View Article and Find Full Text PDFCorrection of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However, transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT), driven by a constitutive cellular promoter.
View Article and Find Full Text PDFIncreased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, gamma-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different gamma-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model.
View Article and Find Full Text PDFAlthough hematopoietic cell gene therapy using retroviral vectors has recently achieved success in clinical trials, safety issues regarding vector insertional mutagenesis have emerged. Vector insertion, resulting in transcriptional activation of proto-oncogenes, played a role in the development of lymphoid leukemia in an X-linked severe combined immunodeficiency trial, and caused myeloid clonal dominance in a trial for chronic granulomatous disease. These events have raised the question of whether gene therapy for other disorders such as beta-thalassemia and sickle cell disease may hold a similar risk.
View Article and Find Full Text PDFBackground: We evaluated the potential of bioluminescence imaging (BLI) for early tumor detection, demonstrating occult sites of disseminated disease and assessing disease progression in a murine model of neuroblastoma.
Methods: Neuroblastoma cells engineered to express the enzyme firefly luciferase were used to establish localized tumors and disseminated disease in SCID mice. Bioluminescent signal intensity was measured at serial time points, and compared with traditional methods of evaluating tumor growth.
Since increased fetal hemoglobin diminishes the severity of beta-thalassemia and sickle cell anemia, a strategy using autologous, stem cell-targeted gene transfer of a gamma-globin gene may be therapeutically useful. We previously found that a gamma-globin lentiviral vector utilizing the beta-globin promoter and elements from the beta-globin locus control region (LCR) totaling 1.7 kb could correct murine beta-thalassemia.
View Article and Find Full Text PDFSuccessful gene therapy of beta-thalassemia will require replacement of the abnormal erythroid compartment with erythropoiesis derived from genetically corrected, autologous hematopoietic stem cells (HSCs). However, currently attainable gene transfer efficiencies into human HSCs are unlikely to yield sufficient numbers of corrected cells for a clinical benefit. Here, using a murine model of beta-thalassemia, we demonstrate for the first time that selective enrichment in vivo of transplanted, drug-resistant HSCs can be used therapeutically and may therefore be a useful approach to overcome limiting gene transfer.
View Article and Find Full Text PDFIncreased fetal hemoglobin (HbF) levels diminish the clinical severity of beta-thalassemia and sickle cell anemia. A treatment strategy using autologous stem cell-targeted gene transfer of a gamma-globin gene may therefore have therapeutic potential. We evaluated oncoretroviral- and lentiviral-based gamma-globin vectors for expression in transduced erythroid cell lines.
View Article and Find Full Text PDF