Publications by authors named "Phillip T Barton"

Two analogous metal-organic frameworks (MOFs) with the perovskite architecture, [C(NH2)3][Mn(HCOO)3] (1) and [(CH2)3NH2][Mn(HCOO)3] (2), exhibit significantly different mechanical properties. The marked difference is attributed to their distinct modes of hydrogen bonding between the A-site amine cation and the anionic framework. The stronger cross-linking hydrogen bonding in 1 gives rise to Young's moduli and hardnesses that are up to twice those in 2, while the thermal expansion is substantially smaller.

View Article and Find Full Text PDF

The electronic structures of four semiconductor compounds BaCu2S2, BaCu2Se2, BaAg2S2, and BaAg2Se2 are studied by density functional theory using both semi-local and hybrid functionals. The ionization energies and electron affinities were determined by aligning the electronic states with the vacuum level by calculating the electrostatic profile within a supercell slab model. The ionization energy and electron affinity of the compounds were calculated using the Heyd-Scuseria-Ernzerhof functionals and range from 4.

View Article and Find Full Text PDF

NiO:Li is an early exemplar for which hole-doping of a correlated insulator gives rise to rich and varied magnetic behavior. It is also an important system from the viewpoint of p-type transparent conducting oxides, and is representative of a large class of materials that have been used in lithium ion batteries, since the end-member compound, LiNiO2 , belongs to the class of layered cathode materials. Despite the deceptive structural and compositional simplicity of this system, a complete understanding of its complex magnetic properties has remained elusive.

View Article and Find Full Text PDF

Magnetic ordering in the geometrically frustrated magnetic oxide spinels MgCr2O4 and ZnCr2O4 is accompanied by a structural change that helps to relieve the frustration. Analysis of high-resolution synchrotron x-ray scattering reveals that the low-temperature structures are well described by a two-phase model of tetragonal I41/amd and orthorhombic Fddd symmetries. The Cr4 tetrahedra of the pyrochlore lattice are distorted at these low-temperatures, with the Fddd phase displaying larger distortions than the I41/amd phase.

View Article and Find Full Text PDF

Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron x-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored.

View Article and Find Full Text PDF

The structures of seven new transition metal frameworks featuring Mn, Co, or Zn and either the meso or chiral D and L isomers of the 2,3-dimethylsuccinate ligand are reported. Frameworks that exhibit two-dimensional covalently bonded layers with weak interlayer interactions can be made with all three cations by incorporation of the chiral isomers of the 2,3-dimethylsuccinate ligand. The formation of such structures, suitable for the creation of nanosheets via exfoliation, is, however, not as ubiquitous as is the case with the 2,2-dimethylsuccinate frameworks since frameworks that incorporate the meso-2,3-dimethylsuccinate ligand form three-dimensional structures.

View Article and Find Full Text PDF

The structures of four new 2,2-dimethylsuccinate frameworks suitable for exfoliation into nanosheets using ultrasonication are reported. These hybrid compounds contain either monovalent (Li(+)) or divalent (Co(2+) and Zn(2+)) cations, and they all feature hydrophobically capped covalently bonded layers that only interact with each other via weak van der Waals forces. Critically this shows that the use of this dicarboxylate ligand generally yields two dimensional compounds suitable for simple and affordable nanosheet exfoliation.

View Article and Find Full Text PDF

We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected.

View Article and Find Full Text PDF

Hybrid inorganic-organic framework materials exhibit unique properties that can be advantageously tuned through choice of the inorganic and organic components and by control of the crystal structure. We present a new hydrothermally prepared 3D hybrid framework, [Mn(2-methylsuccinate)](n) (1), comprising alternating 2D manganese oxide sheets and isolated MnO(6) octahedra, pillared via syn, anti-syn carboxylates. Powder magnetic characterization shows that the compound is a homospin Mn(II) ferrimagnet below 2.

View Article and Find Full Text PDF

A 2D homochiral inorganic-organic framework {[Mn(NPTA)(4,4'-bpy)(H(2)O)]·(H(2)O)(2)}(n) was prepared by assembling achiral polar 4-nitrophthalic acid, manganese ions, and ancillary 4,4'-bipyridine ligands (NPTA = 4-nitrophthalate) (4,4'-bpy = 4,4'-bipyridine). The isomorphous Zn(ii) compound was also prepared as a diamagnetic analogue. Adjacent manganese spin centres are linked by the syn-anti carboxylate to form a helical chain, and chains of the same chirality are connected by 4,4'-bpy ligands to generate a homochiral layered framework.

View Article and Find Full Text PDF