Publications by authors named "Phillip Sharp"

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective treatments. It is characterized by activating KRAS mutations and p53 alterations. However, how these mutations dysregulate cancer-cell-intrinsic gene programs to influence the immune landscape of the tumor microenvironment (TME) remains poorly understood.

View Article and Find Full Text PDF

Unlabelled: Prime editors make programmed genome modifications by writing new sequences into extensions of nicked DNA 3' ends. These edited 3' new strands must displace competing 5' strands to install edits, yet a bias toward retaining the competing 5' strands hinders efficiency and can cause indel errors. Using rational design of the constituent Cas9-nickase to reposition prime editor nicks, we discovered that competing 5' strands are destabilized to favor the edited 3' new strands.

View Article and Find Full Text PDF

Transcription is the primary regulatory step in gene expression. Divergent transcription initiation from promoters and enhancers produces stable RNAs from genes and unstable RNAs from enhancers. Nascent RNA capture and sequencing assays simultaneously measure gene and enhancer activity in cell populations.

View Article and Find Full Text PDF

Sequence-specific RNA-binding proteins (RBPs) play central roles in splicing decisions. Here, we describe a modular splicing architecture that leverages in vitro-derived RNA affinity models for 79 human RBPs and the annotated human genome to produce improved models of RBP binding and activity. Binding and activity are modeled by separate Motif and Aggregator components that can be mixed and matched, enforcing sparsity to improve interpretability.

View Article and Find Full Text PDF
Article Synopsis
  • Transcription is a key regulatory step in gene expression that involves the production of RNAs from both genes and enhancers, with various stability levels among them.
  • The study introduces scGRO-seq, a new single-cell RNA sequencing method, which allows researchers to analyze transcription activity at the single-cell level and understand gene-enhancer interactions better.
  • scGRO-seq reveals that transcription occurs in bursts, showing how closely related genes are co-transcribed and highlighting the influence of super-enhancers on transcription dynamics during the cell cycle.
View Article and Find Full Text PDF

Preventing the biogenesis of disease-relevant proteins is an attractive therapeutic strategy, but attempts to target essential protein biogenesis factors have been hampered by excessive toxicity. Here we describe KZR-8445, a cyclic depsipeptide that targets the Sec61 translocon and selectively disrupts secretory and membrane protein biogenesis in a signal peptide-dependent manner. KZR-8445 potently inhibits the secretion of pro-inflammatory cytokines in primary immune cells and is highly efficacious in a mouse model of rheumatoid arthritis.

View Article and Find Full Text PDF

RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We found that disrupted nuclear RNA surveillance is oncogenic. Cyclin-dependent kinase 13 () is mutated in melanoma, and patient-mutated accelerates zebrafish melanoma.

View Article and Find Full Text PDF

CRISPR-Cas9 introduces targeted DNA breaks that engage competing DNA repair pathways, producing a spectrum of imprecise insertion/deletion mutations (indels) and precise templated mutations (precise edits). The relative frequencies of these pathways are thought to primarily depend on genomic sequence and cell state contexts, limiting control over mutational outcomes. Here, we report that engineered Cas9 nucleases that create different DNA break structures engage competing repair pathways at dramatically altered frequencies.

View Article and Find Full Text PDF

Gene expression heterogeneity underlies cell states and contributes to developmental robustness. While heterogeneity can arise from stochastic transcriptional processes, the extent to which it is regulated is unclear. Here, we characterize the regulatory program underlying heterogeneity in murine embryonic stem cell (mESC) states.

View Article and Find Full Text PDF

Glucocorticoid (GC) resistance is a poor prognostic factor in T-cell acute lymphoblastic leukaemia (T-ALL). Interleukin-7 (IL-7) mediates GC resistance via GC-induced upregulation of IL-7 receptor (IL-7R) expression, leading to increased pro-survival signalling. IL-7R reaches the cell surface via the secretory pathway, so we hypothesized that inhibiting the translocation of IL-7R into the secretory pathway would overcome GC resistance.

View Article and Find Full Text PDF

Macroscopic membraneless organelles containing RNA such as the nucleoli, germ granules, and the Cajal body have been known for decades. These biomolecular condensates are liquid-like bodies that can be formed by a phase transition. Recent evidence has revealed the presence of similar microscopic condensates associated with the transcription of genes.

View Article and Find Full Text PDF

Inhibiting eukaryotic protein translation with small molecules is emerging as a powerful therapeutic strategy. The advantage of targeting cellular translational machinery is that it is required for the highly proliferative state of many neoplastic cells, replication of certain viruses, and ultimately the expression of a wide variety of protein targets. Although, this approach has been exploited to develop clinical agents, such as homoharringtonine (HHT, ), used to treat chronic myeloid leukemia (CML), inhibiting components of the translational machinery is often associated with cytotoxic phenotypes.

View Article and Find Full Text PDF

Regulation of biological processes typically incorporates mechanisms that initiate and terminate the process and, where understood, these mechanisms often involve feedback control. Regulation of transcription is a fundamental cellular process where the mechanisms involved in initiation have been studied extensively, but those involved in arresting the process are poorly understood. Modeling of the potential roles of RNA in transcriptional control suggested a non-equilibrium feedback control mechanism where low levels of RNA promote condensates formed by electrostatic interactions whereas relatively high levels promote dissolution of these condensates.

View Article and Find Full Text PDF

The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate biomolecules with distinct physicochemical properties. Here, we investigated whether condensates concentrate small-molecule cancer therapeutics such that their pharmacodynamic properties are altered. We found that antineoplastic drugs become concentrated in specific protein condensates in vitro and that this occurs through physicochemical properties independent of the drug target.

View Article and Find Full Text PDF

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection.

View Article and Find Full Text PDF

A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells.

View Article and Find Full Text PDF

Pluripotent embryonic stem cells (ESCs) contain the potential to form a diverse array of cells with distinct gene expression states, namely the cells of the adult vertebrate. Classically, diversity has been attributed to cells sensing their position with respect to external morphogen gradients. However, an alternative is that diversity arises in part from cooption of fluctuations in the gene regulatory network.

View Article and Find Full Text PDF

Imprinted genes with parental-biased allelic expression are frequently co-regulated and enriched in common biological pathways. Here, we functionally characterize a large cluster of microRNAs (miRNAs) expressed from the maternally inherited allele ("maternally expressed") to explore the molecular and cellular consequences of imprinted miRNA activity. Using an induced neuron (iN) culture system, we show that maternally expressed miRNAs from the miR-379/410 cluster direct the RNA-induced silencing complex (RISC) to transcriptional and developmental regulators, including paternally expressed transcripts like Plagl1.

View Article and Find Full Text PDF

Compounds - and representing key members of the marinoquinoline family of natural products, together with the related marine alkaloid aplidiopsamine A (), have been synthesized using various combinations of palladium-catalyzed Ullmann cross-coupling and reductive cyclization processes involving a C3-arylated pyrrole as the common intermediate. These natural products have been characterized by single-crystal X-ray analyses and evaluated as inhibitors of acetylcholinesterase (AChE) with congener proving to be the most active.

View Article and Find Full Text PDF

Activating the intrinsic apoptosis pathway with small molecules is now a clinically validated approach to cancer therapy. In contrast, blocking apoptosis to prevent the death of healthy cells in disease settings has not been achieved. Caspases have been favored, but they act too late in apoptosis to provide long-term protection.

View Article and Find Full Text PDF

Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators.

View Article and Find Full Text PDF