Publications by authors named "Phillip S North"

Bloom's syndrome (BS) and Fanconi anemia (FA) are autosomal recessive disorders characterized by cancer and chromosomal instability. BS and FA group J arise from mutations in the BLM and FANCJ genes, respectively, which encode DNA helicases. In this work, FANCJ and BLM were found to interact physically and functionally in human cells and co-localize to nuclear foci in response to replication stress.

View Article and Find Full Text PDF

Mutations in BLM give rise to Bloom's syndrome, a genetic disorder associated with cancer predisposition and chromosomal instability. Using a dual-labeling system in isolated chromosome fibers, we show that the BLM protein is required for two aspects of the cellular response to replicative stress: efficient replication-fork restart and suppression of new origin firing. These functions require the helicase activity of BLM and the Thr99 residue targeted by stress-activated kinases.

View Article and Find Full Text PDF

Mutations in BLM cause Bloom's syndrome, a disorder associated with cancer predisposition and chromosomal instability. We investigated whether BLM plays a role in ensuring the faithful chromosome segregation in human cells. We show that BLM-defective cells display a higher frequency of anaphase bridges and lagging chromatin than do isogenic corrected derivatives that eptopically express the BLM protein.

View Article and Find Full Text PDF

Topoisomerase I-associated DNA single-strand breaks selectively trapped by camptothecins are lethal after being converted to double-strand breaks by replication fork collisions. BLM (Bloom's syndrome protein), a RecQ DNA helicase, and topoisomerase IIIalpha (Top3alpha) appear essential for the resolution of stalled replication forks (Holliday junctions). We investigated the involvement of BLM in the signaling response to Top1-mediated replication DNA damage.

View Article and Find Full Text PDF

Bloom's syndrome (BS) is a human genetic disorder associated with cancer predisposition. The BS gene product, BLM, is a member of the RecQ helicase family, which is required for the maintenance of genome stability in all organisms. In budding and fission yeasts, loss of RecQ helicase function confers sensitivity to inhibitors of DNA replication, such as hydroxyurea (HU), by failure to execute normal cell cycle progression following recovery from such an S-phase arrest.

View Article and Find Full Text PDF

BS is an inherited cancer predisposition disorder caused by inactivation of the RecQ family helicase, BLM. One of the defining features of cells from BS individuals is chromosomal instability, characterized by elevated sister chromatid exchanges (SCEs), as well as chromosomal breaks, deletions, and rearrangements. Although the basis for chromosomal instability is poorly understood, there is evidence that chromosomal abnormalities can arise through an alteration in the efficiency or fidelity of DNA double strand break (DSB) repair.

View Article and Find Full Text PDF