Stroke causes pronounced and widespread slowing of neural activity. Despite decades of work exploring these abnormal neural dynamics and their associated functional impairments, their causes remain largely unclear. To close this gap in understanding, we applied a neurophysiological corticothalamic circuit model to simulate magnetoencephalography (MEG) power spectra recorded from chronic stroke patients.
View Article and Find Full Text PDFDecades of electrophysiological work have demonstrated the presence of "spectral slowing" in stroke patients - a prominent shift in the power spectrum towards lower frequencies, most evident in the vicinity of the lesion itself. Despite the reliability of this slowing as a marker of dysfunctional tissue across patient groups as well as animal models, it has yet to be explained in terms of the pathophysiological processes of stroke. To do so requires clear understanding of the neural dynamics that these differences represent, acknowledging the often overlooked fact that spectral power reflects more than just the amplitude of neural oscillations.
View Article and Find Full Text PDFThe biopsychosocial model of challenge and threat (BPS-CT) is a powerful framework linking psychological processes to reliable patterns of cardiovascular responses during motivated performance situations. Specifically, the BPS-CT poses challenge and threat as two motivational states that can emerge in response to a demanding, self-relevant task, where greater challenge arises when perceived resources are higher than demands, and greater threat arises when perceived resources are lower than demands. By identifying unique patterns of physiological responses associated with challenge and threat, respectively, the BPS-CT affords insight into subjective appraisals of resources and demands, and their determinants, during motivated performance situations.
View Article and Find Full Text PDFThe brain's ability to extract information from multiple sensory channels is crucial to perception and effective engagement with the environment, but the individual differences observed in multisensory processing lack mechanistic explanation. We hypothesized that, from the perspective of information theory, individuals with more effective multisensory processing will exhibit a higher degree of shared information among distributed neural populations while engaged in a multisensory task, representing more effective coordination of information among regions. To investigate this, healthy young adults completed an audiovisual simultaneity judgment task to measure their temporal binding window (TBW), which quantifies the ability to distinguish fine discrepancies in timing between auditory and visual stimuli.
View Article and Find Full Text PDFThe combination of clozapine and other potentially leukopenic drugs may pose a greater risk for neutropenia. However, neutropenia may not always be due to clozapine. When adding potentially leukopenic drugs, clinicians should look for possible alternatives especially as clozapine is often a drug used as the last resort in treatment refractory schizophrenia.
View Article and Find Full Text PDF