A mechanistic study of a new heterocycloisomerization reaction that forms annulated aminopyrroles is presented. Density functional theory calculations and kinetic studies suggest the reaction is catalyzed by trace copper salts and that a Z- to E-hydrazone isomerization occurs through an enehydrazine intermediate before the rate-determining cyclization of the hydrazone onto the alkyne group. The aminopyrrole products are obtained in 36-93% isolated yield depending on the nature of the alkynyl substituent.
View Article and Find Full Text PDFA catalytic enantioselective approach to the synthesis of indolines bearing two asymmetric centers, one of which is all-carbon and quaternary, is described. This reaction proceeds with high levels of diastereoselectivity (>20:1) and high levels of enantioselectivity (up to 99.5:0.
View Article and Find Full Text PDFHerein we describe our exploration, using density functional theory calculations, of a conjugate addition-rearrangement sequence that leads to medium-ring cyclic amines. On the basis of the results of our calculations, we conclude that the rearrangement step is rate determining. In addition, we analyze the role of a carbanion lone pair in the rearrangement step, concluding that it functions as a substituent on a [3,3] sigmatropic shift, rather than a nucleophile; thus, the Woodward-Hoffmann rules are not circumvented in this reaction via involvement of orthogonal orbitals on an atom involved in the rearrangement.
View Article and Find Full Text PDFThe theoretical investigation of concerted and stepwise Cope rearrangements of natural products led to the prediction that some concerted Cope rearrangements can be promoted by noncovalent association of their transition state structures with ammonium cations.
View Article and Find Full Text PDFAlthough evidence has mounted in recent years for the biosynthetic relevance of [4 + 2] cycloaddition reactions, other cycloadditions have received much less attention. Herein we used density functional theory (DFT) calculations to assess the viability of nitrone-alkene (3 + 2) cycloaddition reactions proposed to occur during the biosynthesis of several alkaloid natural products (flueggines and virosaines). The results of our calculations indicate that these reactions have low enough intrinsic barriers and diastereoselectivity that they can proceed without enzymatic intervention.
View Article and Find Full Text PDFMimics of the T7-loop of the bacterial cell division protein FtsZ have been designed and synthesized. The design is based on the X-ray cocrystal structure of P. aeruginosa FtsZ:SulA.
View Article and Find Full Text PDFThe Prins cyclization of syn-β-hydroxy allylsilanes and aldehydes gives cis-2,6-disubstituted 4-alkylidenetetrahydropyrans as sole products in excellent yields regardless of the aldehyde (R″) or syn-β-hydroxy allylsilane substituent (R') used. By reversing the R″ and R' groups, complementary exocyclic stereocontrol can be achieved. When the anti-β-hydroxy allylsilanes are used, the Prins cyclization gives predominantly cis-2,6-disubstituted 4-alkylidenetetrahydropyrans, now with the opposite olefin geometry in excellent yield.
View Article and Find Full Text PDFRoutes to structurally unique spiro-fused pyrazolidoylisoxazolines are reported. These methods start with monosubstituted hydrazines or hydrazides and utilize the nitrile oxide 1,3-dipolar cycloaddition reaction to generate the targeted spiro-fused bis-heterocycles. Molecular shape space diversity analyses were performed on these pyrazolidoylisoxazolines showing that manipulation of the appended R groups significantly changes the molecular shape.
View Article and Find Full Text PDF