Publications by authors named "Phillip Nussbaum"

In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as , MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea.

View Article and Find Full Text PDF

Microbial communities are shaped by cell-cell interactions. Although archaea are often found in associations with other microorganisms, the mechanisms structuring these communities are poorly understood. Here, we report on the structure and function of haloarchaeal contractile injection systems (CISs).

View Article and Find Full Text PDF

In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as , MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea.

View Article and Find Full Text PDF

Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2.

View Article and Find Full Text PDF

Multicellular communities of contiguous cells attached to solid surfaces called biofilms represent a common microbial strategy to improve resilience in adverse environments. While bacterial biofilms have been under intense investigation, whether archaeal biofilms follow similar assembly rules remains unknown.Haloferax volcanii is an extremely halophilic euryarchaeon that commonly colonizes salt crust surfaces.

View Article and Find Full Text PDF

Signal transduction via phosphorylated CheY towards the flagellum and the archaellum involves a conserved mechanism of CheY phosphorylation and subsequent conformational changes within CheY. This mechanism is conserved among bacteria and archaea, despite substantial differences in the composition and architecture of archaellum and flagellum, respectively. Phosphorylated CheY has higher affinity towards the bacterial C-ring and its binding leads to conformational changes in the flagellar motor and subsequent rotational switching of the flagellum.

View Article and Find Full Text PDF

In most bacteria, cell division depends on the tubulin homolog FtsZ and other proteins, such as SepF, that form a complex termed the divisome. Cell division also depends on FtsZ in many archaea, but other components of the divisome are unknown. Here, we demonstrate that a SepF homolog plays important roles in cell division in Haloferax volcanii, a halophilic archaeon that is known to have two FtsZ homologs with slightly different functions (FtsZ1 and FtsZ2).

View Article and Find Full Text PDF

Halophilic archaea have been proposed to exchange DNA and proteins using a fusion-based mating mechanism. Scanning electron microscopy previously suggested that mating involves an intermediate state, where cells are connected by an intercellular bridge. To better understand this process, we used electron cryo-tomography (cryoET) and fluorescence microscopy to visualize cells forming these intercellular bridges.

View Article and Find Full Text PDF

Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.

View Article and Find Full Text PDF

MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown.

View Article and Find Full Text PDF

Bacteria and archaea exhibit tactical behavior and can move up and down chemical gradients. This tactical behavior relies on a motility structure, which is guided by a chemosensory system. Environmental signals are sensed by membrane-inserted chemosensory receptors that are organized in large ordered arrays.

View Article and Find Full Text PDF

The cell membrane of (hyper)thermophilic archaea, including the thermoacidophile Sulfolobus acidocaldarius, incorporates dibiphytanylglycerol tetraether lipids. The hydrophobic cores of such tetraether lipids can include up to eight cyclopentane rings. Presently, nothing is known of the biosynthesis of these rings.

View Article and Find Full Text PDF

N-glycosylation is a post-translational modification that occurs across evolution. In the thermoacidophilic archaea Sulfolobus acidocaldarius, glycoproteins are modified by an N-linked tribranched hexasaccharide reminiscent of the N-glycans assembled in Eukarya. Previously, hexose-bearing dolichol phosphate was detected in a S.

View Article and Find Full Text PDF