Publications by authors named "Phillip M Harris"

Checklists are fundamental and important tools for organizing information about biodiversity that provide a basis for conservation and additional scientific research. While Alabama is recognized as an aquatic biodiversity hotspot with the highest native freshwater fish diversity in the contiguous United States, we currently lack an up-to-date list of the states fishes. In particular, much has changed over the past ~20 years regarding our knowledge of fishes from Alabama and the Mobile River Basin, rendering past comprehensive treatments by Mettee et al.

View Article and Find Full Text PDF

Biodiversity collections are experiencing a renaissance fueled by the intersection of informatics, emerging technologies, and the extended use and interpretation of specimens and archived databases. In this article, we explore the potential for transformative research in ecology integrating biodiversity collections, stable isotope analysis (SIA), and environmental informatics. Like genomic DNA, SIA provides a common currency interpreted in the context of biogeochemical principles.

View Article and Find Full Text PDF

The Lake Tana Labeobarbus species flock represents one of the world's most famous examples of lacustrine species radiations. Previous studies of this group have resulted in the description of at least 15 species based on their differences in functional morphology and definition of two clades (lacustrine and riverine spawning clades) based on life history traits. A total of 166 fish representing 14 Labeobarbus species were genotyped using 10 lineage-specific hexaploid microsatellite loci.

View Article and Find Full Text PDF

Catostomidae ("suckers") is a diverse (76 species) and broadly distributed family of Holarctic freshwater fishes with a rich fossil record and a considerable number (∼35%) of threatened and imperiled species. We integrate DNA sequences (three mitochondrial genes, three nuclear genes), morphological data, and fossil information to infer sucker phylogenetic relationships and divergence times using Bayesian "total-evidence" methods, and then test hypotheses about the temporal diversification of the group. Our analyses resolved many nodes within subfamilies and clarified Catostominae relationships to be of the form ((Thoburniini, Moxostomatini), (Erimyzonini, Catostomini)).

View Article and Find Full Text PDF

Phylogenetic relationships within Labeobarbus, the large-sized hexaploid cyprinids, were examined using cytochrome b gene sequences from a broad range of geographic localities and multiple taxa. Maximum likelihood and Bayesian methods revealed novel lineages from previously unsampled drainages in central (Congo River), eastern (Genale River) and southeastern (Revue and Mussapa Grande rivers) Africa. Relationships of some species of Varicorhinus in Africa (excluding 'V.

View Article and Find Full Text PDF

Recent studies determined that darters with specialized breeding strategies can exhibit deep lineage divergence over fine geographic scales without apparent physical barriers to gene flow. However, the extent to which intrinsic characteristics interact with extrinsic factors to influence population divergence and lineage diversification in darters is not well understood. This study employed comparative phylogeographic and population genetic methods to investigate the influence of life history on gene flow, dispersal ability, and lineage divergence in two sympatric sister darters with differing breeding strategies.

View Article and Find Full Text PDF

The genus Elassoma represents a small but unique component of the aquatic biodiversity hotspot in southeastern North America. We present the first phylogeny of the seven described species, corroborated by sequence data from mitochondrial and nuclear protein coding genes. This analysis reveals a Coastal Plain clade sister to the geographically isolated, and federally protected, Elassoma alabamae.

View Article and Find Full Text PDF

The cyprinid subfamily Oxygastrinae is composed of a diverse group of fishes that has been taxonomically and phylogenetically problematic. Their great variation in appearance, life histories, and trophic diversity resulted in uncertainty regarding their relationships, which led to their historical classification across many disparate subfamilies. The phylogenetic relationships of Oxygastrinae are resolved based on sequence data from four loci: cytochrome b, cytochrome c oxidase I, opsin, and recombination activating gene 1.

View Article and Find Full Text PDF