The fluorinase enzyme (EC 2.5.1.
View Article and Find Full Text PDFContext: Bladder cancer is the fourth-most-common cancer in males in the U.S., who develop about 90% of the high-grade, carcinoma in situ (CIS) of non-muscle involved disease (NMIBC).
View Article and Find Full Text PDFThe history and development of 4'-fluoro-nucleosides is discussed in this review. This is a class of nucleosides which have their origin in the discovery of the rare fluorine containing natural product nucleocidin. Nucleocidin contains a fluorine atom located at the 4'-position of its ribose ring.
View Article and Find Full Text PDFThe fluorinase enzyme represents the only biological mechanism capable of forming stable C-F bonds characterized in nature thus far, offering a biotechnological route to the biosynthesis of value-added organofluorines. The fluorinase is known to operate in a hexameric form, but the consequence(s) of the oligomerization status on the enzyme activity and its catalytic properties remain largely unknown. In this work, this aspect was explored by rationally engineering trimeric fluorinase variants that retained the same catalytic rate as the wild-type enzyme.
View Article and Find Full Text PDFPremise: With digitization and data sharing initiatives underway over the last 15 years, an important need has been prioritizing specimens to digitize. Because duplicate specimens are shared among herbaria in exchange and gift programs, we investigated the extent to which unique biogeographic data are held in small herbaria vs. these data being redundant with those held by larger institutions.
View Article and Find Full Text PDFFluorine is a key element in the synthesis of molecules broadly used in medicine, agriculture and materials. Addition of fluorine to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to integrate fluorometabolites into the biochemistry of living cells are scarce. In this work, synthetic gene circuits for organofluorine biosynthesis are implemented in the platform bacterium Pseudomonas putida.
View Article and Find Full Text PDFThe antibiotic nucleocidin is a product of the soil bacterium T-3018. It is among the very rare fluorine containing natural products but is distinct from the other fluorometabolites in that it is not biosynthesised from 5'-fluorodeoxyadenosine the fluorinase. It seems to have a unique enzymatic fluorination process.
View Article and Find Full Text PDFSelectively fluorinated compounds are found frequently in pharmaceutical and agrochemical products where currently 25-30 % of optimised compounds emerge from development containing at least one fluorine atom. There are many methods for the site-specific introduction of fluorine, but all are chemical and they often use environmentally challenging reagents. Biochemical processes for C-F bond formation are attractive, but they are extremely rare.
View Article and Find Full Text PDFOrg Biomol Chem
August 2019
The fluorinase enzyme from Streptomyces cattleya is shown to catalyse a direct displacement of bromide and iodide by fluoride ion from 5'-bromodeoxyadenosine (5'-BrDA) and 5'-iododeoxyadenosine (5'-IDA) respectively to form 5'-fluorodeoxyadenosine (5'-FDA) in the absence of l-methionine (l-Met) or S-adenosyl-l-methionine (SAM). 5'-BrDA is the most efficient substrate for this enzyme catalysed Finkelstein reaction.
View Article and Find Full Text PDFProstate cancer represents a major public health threat as it is one of the most common male cancers worldwide. The prostate-specific membrane antigen (PSMA) is highly over-expressed in prostatic cancer cells in a manner that correlates with both tumour stage and clinical outcome. As such, PSMA has been identified as an attractive target for both imaging and treatment of prostate cancer.
View Article and Find Full Text PDFThe use of radiolabelled antibodies and antibody-derived recombinant constructs has shown promise for both imaging and therapeutic use. In this context, the biotin-avidin/streptavidin pairing, along with the inverse-electron-demand Diels-Alder (iEDDA) reaction, have found application in pretargeting approaches for positron emission tomography (PET). This study reports the fluorinase-mediated transhalogenation [5'-chloro-5'-deoxyadenosine (ClDA) substrates to 5'-fluoro-5'-deoxyadenosine (FDA) products] of two antibody pretargeting tools, a FDA-PEG-tetrazine and a [ F]FDA-PEG-biotin, and each is assessed either for its compatibility towards iEDDA ligation to trans-cyclooctene or for its affinity to avidin.
View Article and Find Full Text PDFThe A adenosine receptor belongs to a family of G-coupled protein receptors that have been subjected to extensive investigation over the last few decades. Due to their prominent role in the biological functions of the heart, lungs, CNS and brain, they have become a target for the treatment of illnesses ranging from cancer immunotherapy to Parkinson's disease. The imaging of such receptors by using positron emission tomography (PET) has also been of interest, potentially providing a valuable tool for analysing and diagnosing various myocardial and neurodegenerative disorders, as well as offering support to drug discovery trials.
View Article and Find Full Text PDFRe-engineered riboswitches that no longer respond to cellular metabolites, but that instead can be controlled by synthetic molecules, are potentially useful gene regulatory tools for use in synthetic biology and biotechnology fields. Previously, extensive genetic selection and screening approaches were employed to re-engineer a natural adenine riboswitch to create orthogonal ON-switches, enabling translational control of target gene expression in response to synthetic ligands. Here, we describe how a rational targeted approach was used to re-engineer the PreQ1 riboswitch from Bacillus subtilis into an orthogonal OFF-switch.
View Article and Find Full Text PDFLigand-dependent control of gene expression is essential for gene functional analysis, target validation, protein production, and metabolic engineering. However, the expression tools currently available are difficult to transfer between species and exhibit limited mechanistic diversity. Here we demonstrate how the modular architecture of purine riboswitches can be exploited to develop orthogonal and chimeric switches that are transferable across diverse bacterial species, modulating either transcription or translation, to provide tunable activation or repression of target gene expression, in response to synthetic non-natural effector molecules.
View Article and Find Full Text PDFThere has been substantial recent change in coral reef communities. To date, most analyses have focussed on static patterns or changes in single variables such as coral cover. However, little is known about how community-level changes occur at large spatial scales.
View Article and Find Full Text PDFThe development of electrochemical probes useful for investigating the occupancy by other molecules of sites on complex proteins such as human serum albumin (HSA) is described. Ferrocenyl-(oxoethylene)-fatty acid compounds of different fatty acid chain length probed different binding sites on HSA. The interaction could be changed from one primarily with a drug binding site, when the probe was ferrocene methanol, to one predominantly with medium-chain fatty acid binding sites, by adding an (oxoethylene)-fatty acid substituents.
View Article and Find Full Text PDFA series of ferrocenyl conjugates to fatty acids have been designed and synthesized to establish the key properties required for use in biomolecular binding studies. Amperometric detection of the ferrocene conjugates was sought in the region of 0.3 V (vs Ag/AgCl) for use in protein/blood solutions.
View Article and Find Full Text PDF