Publications by authors named "Phillip L Wilcox"

Gene editing is arguably the most significant recent addition to the modern biotechnology toolbox, bringing both profoundly challenging and enabling opportunities. From a technical point of view the specificity and relative simplicity of these new tools has broadened the potential applications. However, from an ethical point of view it has re-ignited the debates generated by earlier forms of genetic modification.

View Article and Find Full Text PDF

Context: Cardio-metabolic conditions in Aotearoa New Zealand (NZ) Māori and non-indigenous Polynesian (Pacific) populations have been increasing in prevalence and severity, especially over the last two decades.

Objectives: To assess knowledge on genetic and non-genetic risk factors for cardio-metabolic disease in the Māori and Pacific populations residing in Aotearoa NZ by a semi-systematic review of the PubMed database. To outline possible future directions in genetic epidemiological research with Māori and Pacific communities.

View Article and Find Full Text PDF

Next-generation sequencing is an efficient method that allows for substantially more markers than previous technologies, providing opportunities for building high-density genetic linkage maps, which facilitate the development of nonmodel species' genomic assemblies and the investigation of their genes. However, constructing genetic maps using data generated via high-throughput sequencing technology (, genotyping-by-sequencing) is complicated by the presence of sequencing errors and genotyping errors resulting from missing parental alleles due to low sequencing depth. If unaccounted for, these errors lead to inflated genetic maps.

View Article and Find Full Text PDF

Background: The gene PPARGC1A, in particular the Gly482Ser variant (rs8192678), had been proposed to be subject to natural selection, particularly in recent progenitors of extant Polynesian populations. Reasons include high levels of population differentiation and increased frequencies of the derived type 2 diabetes (T2D) risk 482Ser allele, and association with body mass index (BMI) in a small Tongan population. However, no direct statistical tests for selection have been applied.

View Article and Find Full Text PDF