Publications by authors named "Phillip J Sanchez"

We explored the association between liver metastases, tumor CD8 T-cell count, and response in patients with melanoma or lung cancer treated with the anti-PD-1 antibody, pembrolizumab. The melanoma discovery cohort was drawn from the phase I Keynote 001 trial, whereas the melanoma validation cohort was drawn from Keynote 002, 006, and EAP trials and the non-small cell lung cancer (NSCLC) cohort from Keynote 001. Liver metastasis was associated with reduced response and shortened progression-free survival [PFS; objective response rate (ORR), 30.

View Article and Find Full Text PDF

Background: Approximately 75% of objective responses to anti-programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown.

Methods: We analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti-PD-1 therapy (pembrolizumab) followed by disease progression months to years later.

View Article and Find Full Text PDF

Type I IFN and IL-12 are well documented to serve as so called "signal 3" cytokines, capable of facilitating CD8(+) T cell proliferation, effector function and memory formation. While their ability to serve in this capacity is well established, to date, no non-cytokine signal 3 mediators have been clearly identified. We have established a vaccine model system in which the primary CD8(+) T cell response is independent of either IL-12 or type I IFN receptors, but dependent on CD27/CD70 interactions.

View Article and Find Full Text PDF

Type I IFNs are important for direct control of viral infection and generation of adaptive immune responses. Recently, direct stimulation of CD4(+) T cells via type I IFNR has been shown to be necessary for the formation of functional CD4(+) T cell responses. In contrast, we find that CD4(+) T cells do not require intrinsic type I IFN signals in response to combined TLR/anti-CD40 vaccination.

View Article and Find Full Text PDF

The TNF superfamily members CD70 and OX40 ligand (OX40L) were reported to be important for CD4(+) T cell expansion and differentiation. However, the relative contribution of these costimulatory signals in driving CD4(+) T cell responses has not been addressed. In this study, we found that OX40L is a more important determinant than CD70 of the primary CD4(+) T cell response to multiple immunization regimens.

View Article and Find Full Text PDF

We have previously shown that Toll-like receptor (TLR) agonists cooperate with CD40 to generate CD8 T cell responses exponentially larger than the responses generated with traditional vaccine formulations. We have also shown that combined TLR agonist/anti-CD40 immunization uniquely induces the upregulation of CD70 on antigen bearing dendritic cells (DCs). In contrast, immunization with either a TLR agonist or a CD40 stimulus alone does not significantly increase CD70 expression on DCs.

View Article and Find Full Text PDF

We previously showed that immunization with a combination of TLR and CD40 agonists (combined TLR/CD40 agonist immunization) resulted in an expansion of Ag-specific CD8 T cells exponentially greater than the expansion observed to immunization with either agonist alone. We now show that the mechanism behind this expansion of T cells is the regulated expression of CD70 on dendritic cells. In contrast to previous results in vitro, the expression of CD70 on dendritic cells in vivo requires combined TLR/CD40 stimulation and is not significantly induced by stimulation of either pathway alone.

View Article and Find Full Text PDF

Androgen-independent prostate cancer is resistant to therapy and is often metastatic. Here we studied the effect of deprivation of tyrosine and phenylalanine (Tyr/Phe), glutamine (Gln), or methionine (Met), in vitro on human DU145 and PC3 androgen-independent prostate cancer cells, and on nontumorigenic human infant foreskin fibroblasts and human prostate epithelial cells. Deprivation of the amino acids similarly inhibited growth of DU145 and PC3 cells, arresting the cell cycle at G0/G1.

View Article and Find Full Text PDF