Publications by authors named "Phillip Hendrickson"

In order to accurately model the pattern of activation due to electrical stimulation of the hippocampus, a multi-scale computational approach is necessary. At the system level, the Admittance Method (ADM) is used to calculate the extracellular voltages created by a stimulating electrode. At the network and cellular levels, a large-scale multi-compartmental neuron network is used to calculate cellular activation.

View Article and Find Full Text PDF

This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions.

View Article and Find Full Text PDF

The correlation due to different topographies was characterized in a large-scale, biologically-realistic, computational model of the rat hippocampus using a spatio-temporal correlation analysis. The effect of the topographical projection between the following subregions of the hippocampus was investigated: the entorhinal to dentate projection, the entorhinal to CA3 projection, and the mossy fiber to CA3 projection. Through this work, analysis was performed on the individual and combined effects of these projections on the activity of the principal neurons of the dentate gyrus and CA3.

View Article and Find Full Text PDF

Hippocampal prosthetic devices have been developed to bridge the gap between functioning portions of the hippocampus, in order to restore lost memory functionality in those suffering from brain injury or diseases. One approach taken in recent neuroprosthetic design is to use a multi-input, multi-output device that reads data from the CA3 in the hippocampus and electrically stimulates the CA1 in an attempt to mimic the appropriate firing pattern that would occur naturally between the two areas. However, further study needs to be conducted in order to optimize electrode placement, pulse magnitude, and shape for creating the appropriate firing pattern.

View Article and Find Full Text PDF

This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively.

View Article and Find Full Text PDF

Goal: This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons.

Methods: The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions.

View Article and Find Full Text PDF

In previously published work, we showed the progress we've made towards creating a large-scale, biologically realistic model of the rat hippocampus, starting with the projection from entorhinal cortex (EC) to the dentate gyrus (DG). We created the model to help us study how the common components of neurobiological systems in mammals - large numbers of neurons with intricate, branching morphologies; active, non-linear membrane properties; nonuniform distributions throughout membrane surface of these non-linear conductances; non-uniform and topographic connectivity between pre- and post-synaptic neurons; and activity-dependent changes in synaptic function - combine and contribute to give a particular brain region its "neural processing" properties. In this work, we report on the results of a series of simulations we ran to test the role of feed-forward and feedback inhibition in the dentate gyrus.

View Article and Find Full Text PDF

A large-scale, biologically realistic, computational model of the rat hippocampus is being constructed to study the input-output transformation that the hippocampus performs. In the initial implementation, the layer II entorhinal cortex neurons, which provide the major input to the hippocampus, and the granule cells of the dentate gyrus, which receive the majority of the input, are modeled. In a previous work, the topography, or the wiring diagram, connecting these two populations had been derived and implemented.

View Article and Find Full Text PDF

Real neurobiological systems in the mammalian brain have a complicated and detailed structure, being composed of 1) large numbers of neurons with intricate, branching morphologies--complex morphology brings with it complex passive membrane properties; 2) active membrane properties--nonlinear sodium, potassium, calcium, etc. conductances; 3) non-uniform distributions throughout the dendritic and somal membrane surface of these non-linear conductances; 4) non-uniform and topographic connectivity between pre- and post-synaptic neurons; and 5) activity-dependent changes in synaptic function. One of the essential, and as yet unanswered questions in neuroscience is the role of these fundamental structural and functional features in determining "neural processing" properties of a given brain system.

View Article and Find Full Text PDF

A large-scale computational model of the hippocampus should consider plasticity at different time scales in order to capture the non-stationary information processing behavior of the hippocampus more accurately. This paper presents a computational model that describes hippocampal long-term potentiation/depression (LTP/LTD) and short-term plasticity implemented in the NEURON simulation environment. The LTP/LTD component is based on spike-timing-dependent plasticity (STDP).

View Article and Find Full Text PDF

In order to understand how memory works in the brain, the hippocampus is highly studied because of its role in the encoding of long-term memories. We have identified four characteristics that would contribute to the encoding process: the morphology of the neurons, their biophysics, synaptic plasticity, and the topography connecting the input to and the neurons within the hippocampus. To investigate how long-term memory is encoded, we are constructing a large-scale biologically realistic model of the rat hippocampus.

View Article and Find Full Text PDF

Generalized Volterra kernel model (GVM) is developed in spirits of the generalized linear model (GLM) and used to predict EMG signals based on M1 cortical spike trains during a prehension task. The GVM for EMG consists of a cascade of a multiple-input-single-output Volterra kernel model (VM) and an exponential activation function. Without loss of generality, the exponential activation function constrains the unbounded VM output within the positive range, which fully covers the dynamic range of the rectified EMG signals.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioniikc5937f7aflde668emsqmmi6q7re6s): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once