Objective: Evidence of myelosuppression has been negatively correlated with patient outcomes following cases of high dose sulfur mustard (SM) exposure. These hematologic complications can negatively impact overall immune function and increase the risk of infection and life-threatening septicemia. Currently, there are no approved medical treatments for the myelosuppressive effects of SM exposure.
View Article and Find Full Text PDFStrokes remain one of the leading causes of disability within the United States. Despite an enormous amount of research effort within the scientific community, very few therapeutics are available for stroke patients. Cytotoxic accumulation of intracellular calcium is a well-studied phenomenon that occurs following ischemic stroke.
View Article and Find Full Text PDFIntroduction: While exposure to sulfur mustard (SM) is commonly associated with the production of vesicating dermal, ocular, and respiratory injuries, systemic damage to bone marrow and lymphatic tissue can decrease critical immune cell populations leading to higher susceptibility to life-threatening infection and septicemia. There are currently no approved medical countermeasures for SM-induced myelosuppression. An intravenous SM challenge model was developed in adult rats as a preliminary proof-of-principle platform to evaluate the efficacy of candidate immunostimulants.
View Article and Find Full Text PDFPurpose: To develop and characterize a mouse model of spontaneous recurrent seizures following nerve agent-induced status epilepticus (SE) and test the efficacy of existing antiepileptic drugs.
Methods: SE was induced in telemeterized male C57Bl6/J mice by soman exposure, and electroencephalographic activity was recorded for 4-6 weeks. Mice were treated with antiepileptic drugs (levetiracetam, valproic acid, phenobarbital) or corresponding vehicles for 14 d after exposure, followed by 14 d of drug washout.
Botulinum neurotoxins (BoNTs) are highly potent toxins that cleave neuronal SNARE proteins required for neurotransmission, causing flaccid paralysis and death by asphyxiation. Currently, there are no clinical treatments to delay or reverse BoNT-induced blockade of neuromuscular transmission. While aminopyridines have demonstrated varying efficacy in transiently reducing paralysis following BoNT poisoning, the precise mechanisms by which aminopyridines symptomatically treat botulism are not understood.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) are exceedingly potent neurological poisons that block cholinergic release in the peripheral nervous system and cause death by asphyxiation. While post-exposure prophylaxis can effectively eliminate toxin in the bloodstream, there are no clinically effective treatments to prevent or reverse disease once BoNT has entered the neuron. To address the need for post-symptomatic countermeasures, we designed and developed an in vitro assay based on whole-cell, patch-clamp electrophysiological monitoring of miniature excitatory post-synaptic currents in synaptically active murine embryonic stem cell-derived neurons.
View Article and Find Full Text PDFBotulinum neurotoxin (BoNT) binds to and internalizes its light chain into presynaptic compartments with exquisite specificity. While the native toxin is extremely lethal, bioengineering of BoNT has the potential to eliminate toxicity without disrupting neuron-specific targeting, thereby creating a molecular vehicle capable of delivering therapeutic cargo into the neuronal cytosol. Building upon previous work, we have developed an atoxic derivative (ad) of BoNT/C1 through rationally designed amino acid substitutions in the metalloprotease domain of wild type (wt) BoNT/C1.
View Article and Find Full Text PDFClinical manifestations of tetanus and botulism result from an intricate series of interactions between clostridial neurotoxins (CNTs) and nerve terminal proteins that ultimately cause proteolytic cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and functional blockade of neurotransmitter release. Although detection of cleaved SNARE proteins is routinely used as a molecular readout of CNT intoxication in cultured cells, impaired synaptic function is the pathophysiological basis of clinical disease. Work in our laboratory has suggested that the blockade of synaptic neurotransmission in networked neuron cultures offers a phenotypic readout of CNT intoxication that more closely replicates the functional endpoint of clinical disease.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well-understood.
View Article and Find Full Text PDFA hallmark of ischemic/reperfusion injury is a change in subunit composition of synaptic 2-amino-3-(3-hydroxy-5-methylisoazol-4-yl)propionic acid receptors (AMPARs). This change in AMPAR subunit composition leads to an increase in surface expression of GluA2-lacking Ca(2+) /Zn(2+) permeable AMPARs. These GluA2-lacking AMPARs play a key role in promoting delayed neuronal death following ischemic injury.
View Article and Find Full Text PDFGlutamate receptor (GluR)-mediated neurotoxicity is implicated in a variety of disorders ranging from ischemia to neural degeneration. Under conditions of elevated glutamate, the excessive activation of GluRs causes internalization of pathologic levels of Ca(2+), culminating in bioenergetic failure, organelle degradation, and cell death. Efforts to characterize cellular and molecular aspects of excitotoxicity and conduct therapeutic screening for pharmacologic inhibitors of excitogenic progression have been hindered by limitations associated with primary neuron culture.
View Article and Find Full Text PDFBackground: Evidence exists that oxidative stress promotes the tyrosine phosphorylation of N-methyl-D-aspartate receptor (NMDAR) subunits during post-ischemic reperfusion of brain tissue. Increased tyrosine phosphorylation of NMDAR NR2A subunits has been reported to potentiate receptor function and exacerbate NMDAR-induced excitotoxicity. Though the effect of ischemia on tyrosine phosphorylation of NMDAR subunits has been well documented, the oxidative stress signaling cascades mediating the enhanced tyrosine phosphorylation of NR2A subunits remain unclear.
View Article and Find Full Text PDF