Microdialysis measurements in the Syrian hamster clearly demonstrate a role for accumbal dopamine (DA) in female sexual behavior. However, large probe size and slow sampling rate prevent associating specific behaviors with DA changes in subregions of the heterogeneous nucleus accumbens. Fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM), which affords millisecond temporal resolution at a micron-sized probe, could address these important issues.
View Article and Find Full Text PDFFast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) provides exquisite temporal and spatial resolution for monitoring brain chemistry. The utility of this approach has recently been demonstrated by measuring sub-second dopamine changes associated with behavior. However, one drawback is the cable link between animal and recording equipment that restricts behavior and precludes monitoring in complex environments.
View Article and Find Full Text PDFEur J Pharmacol
October 2003
The goal of this review is to describe what the voltammetry technique tells us about cocaine-dopamine transporter (DAT) interactions and the subsequent changes in extracellular dopamine levels in the brain. The primary advantage of voltammetry, in this regard, is the capability for kinetic analysis in situ. Analysis of electrically evoked dynamics suggests that cocaine competitively inhibits dopamine uptake in the caudate-putamen and nucleus accumbens with a similar efficacy.
View Article and Find Full Text PDF