Publications by authors named "Phillip E Kish"

The retinal pigment epithelium (RPE) maintains photoreceptor viability and function, completes the visual cycle, and forms the outer blood-retinal barrier (oBRB). Loss of RPE function gives rise to several monogenic retinal dystrophies and contributes to age-related macular degeneration. Retinal detachment (RD) causes separation of the neurosensory retina from the underlying RPE, disrupting the functional and metabolic relationships between these layers.

View Article and Find Full Text PDF

Intra-tumoral heterogeneity is a hallmark of glioblastoma that challenges treatment efficacy. However, the mechanisms that set up tumor heterogeneity and tumor cell migration remain poorly understood. Herein, we present a comprehensive spatiotemporal study that aligns distinctive intra-tumoral histopathological structures, oncostreams, with dynamic properties and a specific, actionable, spatial transcriptomic signature.

View Article and Find Full Text PDF

Purpose: The orbit displays unique vulnerability to inflammatory conditions. The most prevalent of these conditions, thyroid eye disease (TED), occurs in up to 50% of patients with Graves' disease (GD). Whereas the pathology of both TED and GD is driven by autoantibodies, it is unclear why symptoms manifest specifically in the orbit.

View Article and Find Full Text PDF

Gliomas are primary brain tumors characterized by their invasiveness and heterogeneity. Specific histological patterns such as pseudopalisades, microvascular proliferation, mesenchymal transformation and necrosis characterize the histological heterogeneity of high-grade gliomas. Our laboratory has demonstrated that the presence of high densities of mesenchymal cells, named oncostreams, correlate with tumor malignancy.

View Article and Find Full Text PDF

Severely damaged adult zebrafish extraocular muscles (EOMs) regenerate through dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. Members of the Twist family of basic helix-loop-helix transcription factors (TFs) are key regulators of the epithelial-mesenchymal transition (EMT) and are also involved in craniofacial development in humans and animal models. During zebrafish embryogenesis, twist family members (twist1a, twist1b, twist2, and twist3) function to regulate craniofacial skeletal development.

View Article and Find Full Text PDF

Purpose: Genomic reprogramming and cellular dedifferentiation are critical to the success of de novo tissue regeneration in lower vertebrates such as zebrafish and axolotl. In tissue regeneration following injury or disease, differentiated cells must retain lineage while assuming a progenitor-like identity in order to repopulate the damaged tissue. Understanding the epigenetic regulation of programmed cellular dedifferentiation provides unique insights into the biology of stem cells and cancer and may lead to novel approaches for treating human degenerative conditions.

View Article and Find Full Text PDF

Zebrafish extraocular muscles regenerate after severe injury. Injured myocytes dedifferentiate to a mesenchymal progenitor state and reenter the cell cycle to proliferate, migrate, and redifferentiate into functional muscles. A dedifferentiation process that begins with a multinucleated syncytial myofiber filled with sarcomeres and ends with proliferating mononucleated myoblasts must include significant remodeling of the protein machinery and organelle content of the cell.

View Article and Find Full Text PDF

Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood.

View Article and Find Full Text PDF

Background: Tissue regeneration requires a series of steps, beginning with generation of the necessary cell mass, followed by cell migration into damaged area, and ending with differentiation and integration with surrounding tissues. Temporal regulation of these steps lies at the heart of the regenerative process, yet its basis is not well understood. The ability of zebrafish to dedifferentiate mature "post-mitotic" myocytes into proliferating myoblasts that in turn regenerate lost muscle tissue provides an opportunity to probe the molecular mechanisms of regeneration.

View Article and Find Full Text PDF

Cell identity involves both selective gene activity and specialization of cytoplasmic architecture and protein machinery. Similarly, reprogramming differentiated cells requires both genetic program alterations and remodeling of the cellular architecture. While changes in genetic and epigenetic programs have been well documented in dedifferentiating cells, the pathways responsible for remodeling the cellular architecture and eliminating specialized protein complexes are not as well understood.

View Article and Find Full Text PDF

Fibroblast growth factors (Fgfs) regulate critical biological processes such as embryonic development, tissue homeostasis, wound healing, and tissue regeneration. In zebrafish, Fgf signaling plays an important role in the regeneration of the spinal cord, liver, heart, fin, and photoreceptors, although its exact mechanism of action is not fully understood. Utilizing an adult zebrafish extraocular muscle (EOM) regeneration model, we demonstrate that blocking Fgf receptor function using either a chemical inhibitor (SU5402) or a dominant-negative transgenic construct (dnFGFR1a:EGFP) impairs muscle regeneration.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish.

Methods: Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury.

Results: Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI).

View Article and Find Full Text PDF

Heat shock is a common technique for inducible gene expression system in a variety of organisms. Heat shock treatment of adult zebrafish is more involved and generally consists of manually transferring fish between housing rack tanks and preheated water tanks or the use of timed heaters in stand-alone aquaria. To avoid excessive fish handling and to take advantage of the continuous flow of a standard housing rack, proposed modifications consisted of installing an aquarium heater inside each tank, manually setting the heater to reach heat shocking temperatures (> 37°C) and, after that, testing that every tank responded equally.

View Article and Find Full Text PDF

In eukaryotes, targeting the small ribosomal subunit to the mRNA transcript requires a Kozak sequence at the translation initiation site. Despite the critical importance of the Kozak sequence to regulation of gene expression, there have been no correlation studies between its natural variance and efficiency of translation. Combining bioinformatics analysis with molecular biology techniques, and using zebrafish as a test case, we identify Kozak sequences based on their natural variance and characterize their function in vivo.

View Article and Find Full Text PDF

Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders.

View Article and Find Full Text PDF

Purpose: The homeobox transcription factor PITX2 is a known regulator of mammalian ocular development, and human PITX2 mutations are associated with Axenfeld-Rieger syndrome (ARS). However, the treatment of patients with ARS remains mostly supportive and palliative.

Methods: The authors used molecular genetic, pharmacologic, and embryologic techniques to study the biology of ARS in a zebrafish model that uses transgenes to mark neural crest and muscle cells in the head.

View Article and Find Full Text PDF

The formation and invagination of the optic stalk coincides with the migration of cranial neural crest (CNC) cells, and a growing body of data reveals that the optic stalk and CNC cells communicate to lay the foundations for periocular and craniofacial development. Following migration, the interaction between the developing eye and surrounding periocular mesenchyme (POM) continues, leading to induction of transcriptional regulatory cascades that regulate craniofacial morphogenesis. Studies in chick, mice, and zebrafish have revealed a remarkable level of genetic and mechanistic conservation, affirming the power of each animal model to shed light on the broader morphogenic process.

View Article and Find Full Text PDF

5'-O-D- and L-amino acid derivatives and 5'-O-(D- and L-amino acid methyl ester phosphoramidate) derivatives of vidarabine (ara-A) were synthesized as vidarabine prodrugs. Some compounds were equi- or more potent in vitro than vidarabine against two pox viruses and their uptake by cultured cells was improved compared to the parent drug.

View Article and Find Full Text PDF

Bile acids conjugated to oligoarginine-containing peptides (BACs) form complexes with DNA based on the electrostatic interactions between negatively charged phosphate groups of the nucleic acid and the positively charged side chain guanidinium groups of the oligoarginine in the BACs. Charge neutralization of both components and subsequent increases of the net positive charge of the complex combined with the water-soluble lipophilic nature of the bile acid results in changes in the physicochemistry and biological properties of the complexes. We have examined the relationship of a series of 13 BACs on their interaction with circular plasmid DNA (pDNA).

View Article and Find Full Text PDF