1[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), a synthetic derivative of oleanolic acid that exhibits antioxidant and anti-inflammatory activity in several animal and in vitro models, has been shown to be beneficial if given after injury. Although induction of heme oxygenase 1 appears to be a major effector of cytoprotection, the mechanism by which the overall effect is mediated is largely unknown. This study evaluated temporal gene expression profiles to better characterize the early transcriptional events and their relationship to the dynamics of the cytoprotective response in human umbilical vein endothelial cells (HUVEC) to CDDO-Im.
View Article and Find Full Text PDFAim: To identify drugs that may reduce the impact of oxidant stress on cell viability.
Methods: Human umbilical vein endothelial cells were treated with 200 nmol/l CDDO-Im (imidazole) and CDDO-Me (methyl) after exposure to menadione and compared to vehicle-treated cells. Cell viability and cytotoxicity were assessed, and gene expression profiling was performed.
Cellular damage from oxidative stress, in particular following ischemic injury, occurs during heart attack, stroke, or traumatic injury, and is potentially reducible with appropriate drug treatment. We previously reported that caffeic acid phenethyl ester (CAPE), a plant-derived polyphenolic compound, protected human umbilical vein endothelial cells (HUVEC) from menadione-induced oxidative stress and that this cytoprotective effect was correlated with the capacity to induce heme oxygenase-1 (HMOX1) and its protein product, a phase II cytoprotective enzyme. To further improve this cytoprotective effect, we studied a synthetic triterpenoid, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), which is known as a potent phase II enzyme inducer with antitumor and anti-inflammatory activities, and compared it to CAPE.
View Article and Find Full Text PDFA validated LCMS method was developed for the quantitative determination of caffeic acid phenethyl amide (CAPA) and caffeic acid phenethyl ester (CAPE) from rat plasma. Separation was achieved using a reverse-phase C12 HPLC column (150 × 2.00 mm, 4 µm) with gradient elution running water (A) and acetonitrile (B).
View Article and Find Full Text PDFA drug delivery system (DDS) consisting of a perforated microtube (polyimide, inside diameter = 1.8 mm, tube length = 20 mm, hole size = 0.15 mm) was characterized in vitro and in vivo for its usefulness for long-term release of hydrophilic drugs at a constant rate.
View Article and Find Full Text PDFA validated C₁₈ reverse-phase HPLC method with UV detection at 320 nm was developed and used for the stability evaluation of caffeic acid phenethyl amide (CAPA) and caffeic acid phenethyl ester (CAPE) in rat plasma. CAPA is the amide derivative of CAPE, a naturally occurring polyphenolic compound that has been found to be active in a variety of biological pathways. CAPA has been shown to protect endothelial cells against hydrogen peroxide-induced oxidative stress to a similar degree to CAPE.
View Article and Find Full Text PDFBackground: Aluminum silicates have been used to control bleeding after severe traumatic injury. QuikClot (QC) was the first such product, and WoundStat (WS) is the most recent. We recently observed that WS caused vascular thrombosis when applied to stop bleeding.
View Article and Find Full Text PDFBackground: Hemorrhage increases inducible nitric oxide synthase (iNOS) and depletes ATP levels in various tissues. Previous studies have shown that geldanamycin, an inducer of heat shock protein 70kDa (HSP-70) and inhibitor of iNOS, limits both processes. Reduction in NO production limits lipid peroxidation, apoptosome formation, and caspase-3 activation, thereby increasing cellular survival and reducing the sequelae of hemorrhage.
View Article and Find Full Text PDFFabrication techniques have been developed to produce a perforated polymer microtube as a drug delivery device. The technique consists of first forming a silicon platform with trenches and alignment marks to hold the tubes for subsequent processing. Photolithography and reactive ion etching with an inductively coupled plasma source were used to fabricate micro holes on the surface of polyimide tubes.
View Article and Find Full Text PDFA series of catechol ring-fluorinated derivatives of caffeic acid phenethyl amide (CAPA) were synthesized and screened for cytoprotective activity against H2O2 induced oxidative stress in human umbilical vein endothelial cells (HUVEC). CAPA and three fluorinated analogs were found to be significantly cytoprotective when compared to control, with no significant difference in cytoprotection between caffeic acid phenethyl ester (CAPE) and CAPA.
View Article and Find Full Text PDFA drug delivery system that consists of microperforated polyimide microtubes was developed and characterized. Two groups of polyimide tubes were used. One set consisted of microtubes (I.
View Article and Find Full Text PDFTo determine the relationship between catechol ring modifications and the activity of caffeic acid phenethyl ester (CAPE) as a cytoprotective agent, six catechol ring-fluorinated CAPE derivatives were evaluated for their cytoprotective abilities, as well as for their antioxidant and heme oxygenase-1 (HO-1) inducing capacity in a human umbilical vein endothelial cell (HUVEC) model of oxidant stress. To ascertain the involvement of HO-1 induction in the cytoprotective effects of CAPE analogues, their ability to induce HO-1 at 20microM was determined by reverse transcriptase polymerase chain reaction, western blotting and the use of HO-1 inhibitor tin protoporphyrin IX. There was significant induction of HO-1 by CAPE derivatives.
View Article and Find Full Text PDFThe pharmacokinetic profiles of caffeic acid phenethyl ester (CAPE) and its catechol-ring fluorinated derivative (FCAPE) were determined in rats after intravenous administration of 5, 10 or 20 mg/kg for CAPE and 20 mg/kg for FCAPE, respectively. The plasma concentrations of CAPE and FCAPE were measured using a validated liquid chromatography tandem mass spectrometric method. The pharmacokinetic parameters were estimated using non compartmental analysis (NCA) and biexponential fit.
View Article and Find Full Text PDFCaffeic acid phenethyl ester (CAPE), derived from various plant sources, has been shown to ameliorate ischemia/reperfusion injury in vivo, and this has been attributed to its ability to reduce oxidative stress. Here we investigated the cytoprotection of CAPE against menadione-induced oxidative stress in human umbilical vein endothelial cells (HUVEC) to evaluate potential gene expression involvement. CAPE exhibited dose-dependent cytoprotection of HUVEC.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2008
The quantitative determination of caffeic acid phenethyl ester (CAPE) and its fluorinated derivative (FCAPE) from rat plasma using ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) is reported. CAPE and FCAPE were extracted using ethyl acetate in the presence of methyl caffeate (MC) as internal standard. Separation was achieved using a C(18) column (2.
View Article and Find Full Text PDFHemorrhage has been shown to increase inducible nitric oxide synthase (iNOS) and deplete ATP levels in tissues and geldanamycin limits both processes. Moreover, it is evident that inhibition of iNOS reduces caspase-3 and increases survival. Thus we sought to identify the molecular events responsible for the beneficial effect of geldanamycin.
View Article and Find Full Text PDFThe stability of caffeic acid phenethyl ester (CAPE) and its fluorinated derivative (FCAPE) in rat plasma and conditions preventing their degradation are reported. Reverse-phase high-pressure liquid chromatography (HPLC) using taxifolin as an internal standard was applied for the quantitative determination of CAPE and FCAPE in rat plasma extracted with ethyl acetate. The assay was validated over a linear range of 0.
View Article and Find Full Text PDFCaffeic acid phenethyl ester (CAPE), a natural polyphenolic compound with many biological activities, has been shown to be protective against ischemia-reperfusion injury. We have synthesized six new catechol ring-fluorinated CAPE derivatives and evaluated their cytotoxic and cytoprotective effects against menadione-induced cytotoxicity in human umbilical vein endothelial cells. These results provide some insights into the structural basis of CAPE cytoprotection in this assay, which does not appear to be based solely on direct antioxidant properties.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2006
Hemorrhage in mice results in decreased ATP levels in the jejunum, lung, kidney, heart, and brain but not in liver tissue lysates, albeit at variable levels and time kinetics. The decreased protein expression and activity of pyruvate dehydrogenase (PDH) accounted for the hemorrhage-induced ATP loss. Treatment with geldanamycin (GA; 1 microg/g body wt), a known inducer of heat shock protein (HSP)70, inhibited the hemorrhage-induced ATP loss in the jejunum, lung, heart, kidney, and brain.
View Article and Find Full Text PDFThe purpose of this study is to investigate if a readily available cell line (APRE-19) may be used to study in vitro function of visual cycle enzymes such as lecithin:retinol acyltransferase (LRAT). Cells incubated with exogenous retinol accumulated intracellular all-trans retinol and all-trans retinyl ester. Membrane proteins from ARPE-19 exhibited LRAT activity, which was inhibited by an LRAT inhibitor, retinyl bromoacetate (RBA).
View Article and Find Full Text PDFThe aim of this study was to determine whether hemorrhage affects the levels of a variety of stress-related proteins and whether changes can be inhibited by drugs reported to provide protection from ischemia and reperfusion injury. Male Swiss Webster mice were subjected to a 40% hemorrhage without resuscitation. Western blot analysis indicated that c-Jun (an AP-1 protein), Kruppel-like factor 6 (KFL6), and inducible nitric oxide synthase (iNOS) were upregulated sequentially in that order.
View Article and Find Full Text PDFInterleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are two major cytokines that rise to relatively high levels during systemic inflammation, and the endothelial cell (EC) response to these cytokines may explain some of the dysfunction that occurs. To better understand the cytokine-induced responses of EC at the gene expression level, human umbilical vein EC were exposed to IL-1beta or TNF-alpha for various times and subjected to cDNA microarray analyses to study alterations in their mRNA expression. Of approximately 4,000 genes on the microarray, expression levels of 33 and 58 genes appeared to be affected by treatment with IL-1beta and TNF-alpha, respectively; 25 of these genes responded to both treatments.
View Article and Find Full Text PDF