Publications by authors named "Phillip Bumpers"

Increased temperatures are altering rates of organic matter (OM) breakdown in stream ecosystems with implications for carbon (C) cycling in the face of global change. The metabolic theory of ecology (MTE) provides a framework for predicting temperature effects on OM breakdown, but differences in the temperature dependence of breakdown driven by different organismal groups (i.e.

View Article and Find Full Text PDF

The Clean Water Act (CWA) of 1972 regulates water quality in U.S. inland waters under a system of cooperative federalism in which states are delegated implementation and enforcement authority of CWA provisions by the U.

View Article and Find Full Text PDF

Time-series data offer wide-ranging opportunities to test hypotheses about the physical and biological factors that influence species abundances. Although sophisticated models have been developed and applied to analyze abundance time series, they require information about species detectability that is often unavailable. We propose that in many cases, simpler models are adequate for testing hypotheses.

View Article and Find Full Text PDF

Diverse global change processes are reshaping the biogeochemistry of stream ecosystems. Nutrient enrichment is a common stressor that can modify flows of biologically important elements such as carbon (C), nitrogen (N), and phosphorus (P) through stream foodwebs by altering the stoichiometric composition of stream organisms. However, enrichment effects on concentrations of other important essential and trace elements in stream taxa are less understood.

View Article and Find Full Text PDF

We used a recently published, open-access data set of U.S. streamwater nitrogen (N) and phosphorus (P) concentrations to test whether watershed land use differentially influences N and P concentrations, including the relative availability of dissolved and particulate nutrient fractions.

View Article and Find Full Text PDF

Nutrient-driven perturbations to the resource base of food webs are predicted to attenuate with trophic distance, so it is unclear whether higher-level consumers will generally respond to anthropogenic nutrient loading. Few studies have tested whether nutrient (specifically, nitrogen [N] and phosphorus [P]) enrichment of aquatic ecosystems propagates through multiple trophic levels to affect predators, or whether N vs. P is relatively more important in driving effects on food webs.

View Article and Find Full Text PDF

Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C) sequestration by algae. Tests of nutrient enrichment on the fates of terrestrial organic C, which supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen (N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that average terrestrial organic C residence time was reduced by ~50% as compared to reference conditions as a result of nutrient pollution.

View Article and Find Full Text PDF