Publications by authors named "Phillip Bradley"

Interpreting genome sequences requires the functional analysis of thousands of predicted proteins, many of which are uncharacterized and without obvious homologs. To assess whether the roles of large sets of uncharacterized genes can be assigned by targeted application of a suite of technologies, we used four complementary protein-based methods to analyze a set of 100 uncharacterized but essential open reading frames (ORFs) of the yeast Saccharomyces cerevisiae. These proteins were subjected to affinity purification and mass spectrometry analysis to identify copurifying proteins, two-hybrid analysis to identify interacting proteins, fluorescence microscopy to localize the proteins, and structure prediction methodology to predict structural domains or identify remote homologies.

View Article and Find Full Text PDF

We use the Rosetta de novo structure prediction method to produce three-dimensional structure models for all Pfam-A sequence families with average length under 150 residues and no link to any protein of known structure. To estimate the reliability of the predictions, the method was calibrated on 131 proteins of known structure. For approximately 60% of the proteins one of the top five models was correctly predicted for 50 or more residues, and for approximately 35%, the correct SCOP superfamily was identified in a structure-based search of the Protein Data Bank using one of the models.

View Article and Find Full Text PDF