Uropathogenic is a major cause of urinary tract infections. Analysis of the innate immune response in immortalized urothelial cells suggests that the bacterial flagellar subunit, flagellin, is key in inducing host defenses. A panel of 48 clinical uro-associated .
View Article and Find Full Text PDFBackground: Nitrofurantoin has been re-introduced as a first-choice antibiotic to treat uncomplicated acute urinary tract infections in England and Wales. Highly effective against common uropathogens such as Escherichia coli, its use is accompanied by a low incidence (<10%) of antimicrobial resistance. Resistance to nitrofurantoin is predominantly via the acquisition of loss-of-function, step-wise mutations in the nitroreductase genes nfsA and nfsB.
View Article and Find Full Text PDFBackground: The AnTIC trial linked continuous low-dose antibiotic prophylaxis treatments to a lower incidence of symptomatic urinary tract infections (UTIs) among individuals performing clean intermittent self-catheterisation (CISC).
Objective: To explore potential mechanisms underlying the protective effects of low-dose antibiotic prophylaxis treatments, blood and urine samples and uro-associated isolates from AnTIC participants were analysed.
Design Setting And Participants: Blood samples ( = 204) were analysed for gene polymorphisms associated with UTI susceptibility and multiple urine samples ( = 558) were analysed for host urogenital responses.
Flagellar gene expression is bimodal in Under certain growth conditions, some cells express the flagellar genes whereas others do not. This results in mixed populations of motile and nonmotile cells. In the present study, we found that two independent mechanisms control bimodal expression of the flagellar genes.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFRecurrent urinary tract infection (rUTI) is a major medical problem, especially in the elderly and infirm, but the nature of the reservoir of organisms responsible for survival and recolonisation after antibiotic treatment in humans is unclear. Here, we demonstrate the presence of cell-wall deficient (L-form) bacteria in fresh urine from 29 out of 30 older patients with rUTI. In urine, E.
View Article and Find Full Text PDFBackground: Age is a significant risk factor for recurrent urinary tract (rUTI) infections, but the clinical picture is often confused in older patients who also present with asymptomatic bacteriuria (ASB). Yet, how bacteriuria establishes in such patients and the factors underpinning and/or driving symptomatic UTI episodes are still not understood. To explore this further a pilot study was completed in which 30 male and female community based older patients (mean age 75y) presenting clinically with ASB / rUTIs and 15 control volunteers (72y) were recruited and monitored for up to 6 months.
View Article and Find Full Text PDFBackground: Pancreas transplantation restores insulin secretion in type 1 diabetes mellitus. The graft also produces exocrine secretions that can be drained enterically (enteric drainage [ED]) or via the bladder (bladder drainage [BD]). We suggest that in BD transplants, such secretions destroy bladder innate immunity, specifically host defense peptides/proteins (HDPs), which increases patient susceptibility to recurrent urinary tract infections (rUTIs).
View Article and Find Full Text PDFThe flagellar systems of Escherichia coli and Salmonella enterica exhibit a significant level of genetic and functional synteny. Both systems are controlled by the flagellar specific master regulator FlhDC. Since the early days of genetic analyses of flagellar systems it has been known that E.
View Article and Find Full Text PDFObjectives: Recurrent urinary tract infections are associated with uropathogenic (UPEC) ascending and infecting the urinary tract. Antibiotics provide only symptomatic relief, not prevent recurrence. Clinical evidence suggests that intravesical glycosaminoglycan therapy, such as hyaluronic acid (HA), helps reduce UTI recurrence.
View Article and Find Full Text PDFThe identification of the host defence peptides as target effectors in the innate defence of the uro-genital tract creates new translational possibilities for immunomodulatory therapies, specifically vaginal therapies to treat women suffering from rUTI, particularly those carrying the TLR5_C1174T SNP. Urinary tract infections (UTIs) are a microbial disease reported worldwide. Women are particularly susceptible with many suffering debilitating recurrent (r) infections.
View Article and Find Full Text PDFThe flagellum is a rotary motor that enables bacteria to swim in liquids and swarm over surfaces. Numerous global regulators control flagellar assembly in response to cellular and environmental factors. Previous studies have also shown that flagellar assembly is affected by the growth-rate of the cell.
View Article and Find Full Text PDFThe bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export.
View Article and Find Full Text PDFFor self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI(6)FliJ complex is structurally similar to the α(3)β(3)γ complex of F(O)F(1)-ATPase.
View Article and Find Full Text PDFUnlabelled: Many bacteria are motile only when nutrients are scarce. In contrast, Salmonella enterica serovar Typhimurium is motile only when nutrients are plentiful, suggesting that this bacterium uses motility for purposes other than foraging, most likely for host colonization. In this study, we investigated how nutrients affect motility in S.
View Article and Find Full Text PDFThe assembly of the bacterial flagellum is exquisitely controlled. Flagellar biosynthesis is underpinned by a specialized type III secretion system that allows export of proteins from the cytoplasm to the nascent structure. Bacillus subtilis regulates flagellar assembly using both conserved and species-specific mechanisms.
View Article and Find Full Text PDFFlgN chaperone acts as a bodyguard to protect its cognate substrates, FlgK and FlgL, from proteolysis in the cytoplasm. Docking of the FlgN-FlgK complex with the FliI ATPase of the flagellar type III export apparatus is key to the protein export process. However, a ΔfliH-fliI flhB(P28T) mutant forms some flagella even in the absence of FliH and FliI, raising the question of how FlgN promotes the export of its cognate substrates.
View Article and Find Full Text PDFBacterial flagella play key roles in surface attachment and host-bacterial interactions as well as driving motility. Here, we have investigated the ability of Caulobacter crescentus to assemble its flagellar filament from six flagellins: FljJ, FljK, FljL, FljM, FljN, and FljO. Flagellin gene deletion combinations exhibited a range of phenotypes from no motility or impaired motility to full motility.
View Article and Find Full Text PDFThe flagellar genes in Salmonella enterica are expressed in a temporal hierarchy that mirrors the assembly process itself. The σ(28)-FlgM regulatory circuit plays a key role in controlling this temporal hierarchy. This circuit ensures that the class 3 genes are expressed only when the hook-basal body (HBB), a key intermediate in flagellar assembly, is complete.
View Article and Find Full Text PDFEach Salmonella enterica serovar Typhimurium cell produces a discrete number of complete flagella. Flagellar assembly responds to changes in growth rates through FlhD(4) C(2) activity. FlhD(4) C(2) activity is negatively regulated by the type 3 secretion chaperone FliT.
View Article and Find Full Text PDFFliZ is an activator of class 2 flagellar gene expression in Salmonella enterica. To understand its role in flagellar assembly, we investigated how FliZ affects gene expression dynamics. We demonstrate that FliZ participates in a positive-feedback loop that induces a kinetic switch in class 2 gene expression.
View Article and Find Full Text PDFSalmonella enterica, a common food-borne pathogen, differentially regulates the expression of multiple genes during the infection cycle. These genes encode systems related to motility, adhesion, invasion, and intestinal persistence. Key among them is a type three secretion system (T3SS) encoded within Salmonella pathogenicity island 1 (SPI1).
View Article and Find Full Text PDFThis past January, in Cuernavaca Mexico, a conglomerate of scientists met to discuss the contemporary view of Bacterial Locomotion and Signal Transduction (BLAST). The BLAST meetings represent a field that has its roots in chemotaxis and the flagellum-based motility but now encompass all types of cellular movement and signalling. The topics varied from the interactions between molecules to the interactions between species.
View Article and Find Full Text PDFFlagellar gene expression is temporally regulated in response to the assembly state of the growing flagellum. The key mechanism for enforcing this temporal hierarchy in Salmonella enterica serovar Typhimurium is the sigma(28)-FlgM checkpoint, which couples the expression of the late flagellar (P(class3)) genes to the completion of the hook-basal body. This checkpoint is triggered when FlgM is secreted from the cell.
View Article and Find Full Text PDF