Archaea display amazing physiological properties that are of interest to understand at the molecular level including the ability to thrive at extreme environmental conditions, the presence of novel metabolic pathways (e.g. methanogenesis, methylaspartate cycle) and the use of eukaryotic-like protein machineries for basic cellular functions.
View Article and Find Full Text PDFNumerous proteases have been shown to catalyze the precisely-timed and rapid turnover of key cellular proteins. Often these regulatory proteases are either energy-dependent or intramembrane-cleaving. In archaea, two different types of energy-dependent proteases have been characterized: 20S proteasomes associated with proteasome-activating nucleotidases and membrane-associated Lon proteases.
View Article and Find Full Text PDFThe development of whole systems approaches to microbiology (e.g. genomics and proteomics) has facilitated a global view of archaeal physiology.
View Article and Find Full Text PDF