Publications by authors named "Phillip A Doerfler"

Inducing fetal hemoglobin (HbF) in red blood cells can alleviate β-thalassemia and sickle cell disease. We compared five strategies in CD34 hematopoietic stem and progenitor cells, using either Cas9 nuclease or adenine base editors. The most potent modification was adenine base editor generation of γ-globin -175A>G.

View Article and Find Full Text PDF

Around birth, globin expression in human red blood cells (RBCs) shifts from γ-globin to β-globin, which results in fetal haemoglobin (HbF, αγ) being gradually replaced by adult haemoglobin (HbA, αβ). This process has motivated the development of innovative approaches to treat sickle cell disease and β-thalassaemia by increasing HbF levels in postnatal RBCs. Here we provide therapeutically relevant insights into globin gene switching obtained through a CRISPR-Cas9 screen for ubiquitin-proteasome components that regulate HbF expression.

View Article and Find Full Text PDF

We characterized the human β-like globin transgenes in two mouse models of sickle cell disease (SCD) and tested a genome-editing strategy to induce red blood cell fetal hemoglobin (HbF; α2γ2). Berkeley SCD mice contain four to 22 randomly arranged, fragmented copies of three human transgenes (HBA1, HBG2-HBG1-HBD-HBBS and a mini-locus control region) integrated into a single site of mouse chromosome 1. Cas9 disruption of the BCL11A repressor binding motif in the γ-globin gene (HBG1 and HBG2; HBG) promoters of Berkeley mouse hematopoietic stem cells (HSCs) caused extensive death from multiple double-strand DNA breaks.

View Article and Find Full Text PDF

The mechanisms by which the fetal-type β-globin-like genes HBG1 and HBG2 are silenced in adult erythroid precursor cells remain a fundamental question in human biology and have therapeutic relevance to sickle cell disease and β-thalassemia. Here, we identify via a CRISPR-Cas9 genetic screen two members of the NFI transcription factor family-NFIA and NFIX-as HBG1/2 repressors. NFIA and NFIX are expressed at elevated levels in adult erythroid cells compared with fetal cells, and function cooperatively to repress HBG1/2 in cultured cells and in human-to-mouse xenotransplants.

View Article and Find Full Text PDF

Hereditary persistence of fetal hemoglobin (HPFH) ameliorates β-hemoglobinopathies by inhibiting the developmental switch from γ-globin (HBG1/HBG2) to β-globin (HBB) gene expression. Some forms of HPFH are associated with γ-globin promoter variants that either disrupt binding motifs for transcriptional repressors or create new motifs for transcriptional activators. How these variants sustain γ-globin gene expression postnatally remains undefined.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is a monogenic disorder characterized by recurrent episodes of severe bone pain, multi-organ failure, and early mortality. Although medical progress over the past several decades has improved clinical outcomes and offered cures for many affected individuals living in high-income countries, most SCD patients still experience substantial morbidity and premature death. Emerging technologies to manipulate somatic cell genomes and insights into the mechanisms of developmental globin gene regulation are generating potentially transformative approaches to cure SCD by autologous hematopoietic stem cell (HSC) transplantation.

View Article and Find Full Text PDF

Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR-Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores using CRISPR/Cas9 technology to disrupt gene regulatory elements that suppress the expression of fetal hemoglobin (HbF), which could be a new treatment for sickle cell disease and β-thalassemia.
  • Researchers successfully targeted the BCL11A protein, which blocks γ-globin gene expression, and induced significant levels of HbF in modified hematopoietic cells.
  • The modified cells showed no harmful off-target effects and maintained healthy differentiation into various blood cell types, suggesting the approach could be a safe and effective treatment for hemoglobin-related disorders.
View Article and Find Full Text PDF

Pompe disease is caused by mutations in the gene encoding the lysosomal glycogen-metabolizing enzyme, acid-alpha glucosidase (GAA). Tongue myofibers and hypoglossal motoneurons appear to be particularly susceptible in Pompe disease. Here we used intramuscular delivery of adeno-associated virus serotype 9 (AAV9) for targeted delivery of an enhanced form of GAA to tongue myofibers and motoneurons in 6-month-old Pompe ( ) mice.

View Article and Find Full Text PDF

Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy.

View Article and Find Full Text PDF

Pompe disease is a progressive neuromuscular disorder caused by lysosomal accumulation of glycogen from a deficiency in acid alpha-glucosidase (GAA). Replacement of the missing enzyme is available by repeated protein infusions; however, efficacy is limited by immune response and inability to restore enzymatic function in the central nervous system. An alternative therapeutic option is adeno-associated virus (AAV)-mediated gene therapy, which results in widespread gene transfer and prolonged transgene expression.

View Article and Find Full Text PDF

Deficiency of acid alpha glucosidase (GAA) causes Pompe disease in which the patients systemically accumulate lysosomal glycogen in muscles and nervous systems, often resulting in infant mortality. Although enzyme replacement therapy (ERT) is effective in treating patients with Pompe disease, formation of antibodies against rhGAA complicates treatment. In this report, we investigated induction of tolerance by oral administration of GAA expressed in chloroplasts.

View Article and Find Full Text PDF

Antibodies formed against the therapeutic protein are a life-threatening complication that arises during enzyme replacement therapy for Pompe disease (acid α-glucosidase deficiency; GAA). To provide an effective alternative to current practices, we investigated the capacity of anti-B-cell activating factor (BAFF) as a novel drug candidate to prevent antibody formation in a Pompe disease mouse model. A BAFF-neutralizing antibody was administered prophylactically and with maintenance doses in association with enzyme replacement therapy using recombinant human GAA in Gaa(-/-) mice.

View Article and Find Full Text PDF

Limiting factors in large preclinical and clinical studies utilizing adeno-associated virus (AAV) for gene therapy are focused on the restrictive packaging capacity, the overall yields, and the versatility of the production methods for single AAV vector production. Furthermore, applications where multiple vectors are needed to provide long expression cassettes, whether because of long cDNA sequences or the need of different regulatory elements, require that each vector be packaged and characterized separately, directly affecting labor and cost associated with such manufacturing strategies. To overcome these limitations, we propose a novel method of vector production that allows for the packaging of multiple expression cassettes in a single transfection step.

View Article and Find Full Text PDF

Enzyme replacement therapy (ERT) with recombinant human acid-α-glucosidase (rhGAA) is the only FDA approved therapy for Pompe disease. Without ERT, severely affected individuals (early onset) succumb to the disease within 2 years of life. A spectrum of disease severity and progression exists depending upon the type of mutation in the GAA gene (GAA), which in turn determines the amount of defective protein produced and its enzymatic activity.

View Article and Find Full Text PDF