Adaptive optics (AO) imaging enables direct, objective assessments of retinal cells. Applications of AO show great promise in advancing our understanding of the etiology of inherited retinal disease (IRDs) and discovering new imaging biomarkers. This scoping review systematically identifies and summarizes clinical studies evaluating AO imaging in IRDs.
View Article and Find Full Text PDFEven during fixation, our eyes constantly make small, involuntary eye movements that cause the retinal image to be swept across our retinae. Despite this, our world appears completely stable, due to powerful perceptual stabilisation mechanisms. Whether these mechanisms are of functional consequence for visual performance remains largely unexplored, however.
View Article and Find Full Text PDFBriefly presented stimuli can reveal the lower limit of retinal-based perceptual stabilization mechanisms. This is demonstrated in perceptual grouping of temporally asynchronous stimuli, in which alternate row or column elements of a regular grid are presented over two successive display frames with an imperceptible temporal offset. The grouping phenomenon results from a subtle shift between alternate grid elements due to incomplete compensation of small, fixational eye movements occurring between the two presentation frames.
View Article and Find Full Text PDFPurpose: Recent developments in electronic technology are making it possible to home monitor the sensitivity of the central visual field using portable devices. We used simulations to investigate whether the higher test frequency afforded by home monitoring improves the early detection of rapid visual field loss in glaucoma and how any benefits might be affected by imperfect compliance or increased variability in the home-monitoring test.
Design: Computer simulation, with parameter selection confirmed with a cohort study.
Typically, perceptual stabilization mechanisms make us unaware of the retinal image motion produced by the small, involuntary eye movements our eyes constantly make during fixation. The breakdown of perceptual stability is demonstrated by the on-line jitter illusion, in which a circular static pattern appears to jitter coherently when surrounded by a flickering annular pattern. Although both regions of the stimulus are subject to retinal motion from eye movements, the visual system attributes this motion to the central static region in the form of visual jitter, while the surrounding flickering region remains perceptually stable.
View Article and Find Full Text PDFAlthough changes in vessel diameter following gas perturbation have been documented in retinal arterioles and venules, these responses have yet to be quantified in the smallest vessels of the human retina. Here, using in vivo adaptive optics, we imaged 3-25 µm diameter vessels of the human inner retinal circulation and monitored the effects of altered gas-breathing conditions. During isocapnic hyperoxia, definite constrictions were seen in 51% of vessel segments (mean ± SD for pre-capillary arterioles -9.
View Article and Find Full Text PDFRegional changes in blood flow are initiated within neural tissue to help fuel local differences in neural activity. Classically, this response was thought to arise only in larger arterioles and venules. However, recently, it has been proposed that a) the smallest vessels of the circulation make a comparable contribution, and b) the response should be localised intermittently along such vessels, due to the known distribution of contractile mural cells.
View Article and Find Full Text PDFPurpose: We describe a novel approach to analyze fluorescein angiography to investigate fluorescein flow dynamics in the rat posterior retina as well as identify abnormal areas following laser photocoagulation.
Methods: Experiments were undertaken in adult Long Evans rats. Using a rodent retinal camera, videos were acquired at 30 frames per second for 30 seconds following intravenous introduction of sodium fluorescein in a group of control animals (n = 14).