Publications by authors named "Philippe-Henri Gosselin"

In object recognition, the Bag-of-Words model assumes: i) extraction of local descriptors from images, ii) embedding the descriptors by a coder to a given visual vocabulary space which results in mid-level features, iii) extracting statistics from mid-level features with a pooling operator that aggregates occurrences of visual words in images into signatures, which we refer to as First-order Occurrence Pooling. This paper investigates higher-order pooling that aggregates over co-occurrences of visual words. We derive Bag-of-Words with Higher-order Occurrence Pooling based on linearisation of Minor Polynomial Kernel, and extend this model to work with various pooling operators.

View Article and Find Full Text PDF

We consider a pipeline for image classification or search based on coding approaches like bag of words or Fisher vectors. In this context, the most common approach is to extract the image patches regularly in a dense manner on several scales. This paper proposes and evaluates alternative choices to extract patches densely.

View Article and Find Full Text PDF

Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR).

View Article and Find Full Text PDF