We report on an analysis of the nonlinear absorption in lithium triborate (LBO) used for second and third harmonic generation of ultrashort laser pulses at average powers in the order of kW and with sub-picosecond pulse duration. Thermographic imaging of the LBO crystals together with a simple analytical model revealed the presence of nonlinear absorption in both harmonic generation processes. Subsequent processing with a numerical model considering the nonlinear mixing, the absorption, and the heat conduction was used to estimate the absorption coefficients.
View Article and Find Full Text PDFWe present an ultrafast laser with a near-diffraction-limited beam quality delivering more than 1.4 kW of average power in the visible spectral range. The laser is based on second harmonic generation in a lithium triborate crystal of a Yb:YAG thin-disk multipass amplifier emitting more than 2 kW of average power in the infrared.
View Article and Find Full Text PDFWe report on the generation of continuous-wave, intra-cavity frequency-doubled, multi-mode laser radiation in an Yb:LuAG thin-disk laser. Output powers of up to 1 kW at a wavelength of 515 nm were achieved at an unprecedented optical efficiency of 51.6% with respect to the pumping power of the thin-disk laser.
View Article and Find Full Text PDFSecond-order nonlinear processes such as second harmonic generation or parametric amplification have found numerous applications in the scientific and industrial world, from micromachining to petawatt laser facilities. These nonlinear interactions are mostly carried out in birefringent crystals because of their low cost and the possibility to operate at high powers Phase-matching configurations in birefringent crystals are determined by their refractive indexes. Here, we show that an important mechanical stress can be used to significantly change the phase-matching properties of a birefringent crystal.
View Article and Find Full Text PDF