Publications by authors named "Philippe Vaast"

Introduction: Breeding programs have developed high-yielding Coffea arabica F1-hybrids as an adaptation against adverse conditions associated with climate change. However, theresponse to drought of coffee F1 hybrids has seldom been assessed.

Methods: A trial was established with five C.

View Article and Find Full Text PDF

Worldwide coffee production, especially Arabica coffee, is threatened by climatic change, plants diseases and vulnerability of smallholders. Meanwhile, consumers' demand for socially and environmentally sustainable products is steadily increasing, driving the engagement of stakeholders in agro-ecological and social initiatives. Here we present a new organizational model, the "Coffee agroforestry business-driven cluster" (CaFC), which aims at preserving ecosystems while offering producers a fair income.

View Article and Find Full Text PDF

Climate models predict decreasing precipitation and increasing air temperature, causing concern for the future of cocoa in the major producing regions worldwide. It has been suggested that shade could alleviate stress by reducing radiation intensity and conserving soil moisture, but few on-farm cocoa studies are testing this hypothesis. Here, for 33 months, we subjected twelve-year cocoa plants in Ghana to three levels of rainwater suppression (full rainwater, 1/3 rainwater suppression and 2/3 rainwater suppression) under full sun or 40 % uniform shade in a split plot design, monitoring soil moisture, physiological parameters, growth, and yield.

View Article and Find Full Text PDF

Background: The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600-1100 m above sea level (a.s.l.

View Article and Find Full Text PDF

Intensive monoculture coffee farms quickly expanded in Yunnan Province in the 1990's and 2000's. In 2012, local authorities in Pu'er and Xishuangbanna Prefectures, the main coffee producing centre in the province, initiated a large-scale conversion program of these farms towards coffee-agroforestry systems to promote "ecologically-friendly coffee". Shade tree inventories and household interviews were conducted in these two prefectures to characterize coffee farms and the Local Ecological Knowledge (LEK) of farmers on the provision of ecosystem services by associated tree species.

View Article and Find Full Text PDF

Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers' livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers' coping strategies.

View Article and Find Full Text PDF

Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at different spatial and temporal scales in smallholder coffee-dairy farms in Murang'a County, Central Kenya.

View Article and Find Full Text PDF
Article Synopsis
  • Cocoa agroforestry systems, which include shade trees, were studied to evaluate their resilience compared to cocoa grown in full sun under extreme climate conditions.
  • Unexpectedly, the two shade tree species used in the study created strong competition for water, which negatively impacted the cocoa plants' growth.
  • This finding challenges the assumption that shade trees will always provide beneficial effects for cocoa cultivation in harsh climates.
View Article and Find Full Text PDF

Cocoa agroforestry is perceived as potential adaptation strategy to sub-optimal or adverse environmental conditions such as drought. We tested this strategy over wet, dry and extremely dry periods comparing cocoa in full sun with agroforestry systems: shaded by (i) a leguminous tree species, Albizia ferruginea and (ii) Antiaris toxicaria, the most common shade tree species in the region. We monitored micro-climate, sap flux density, throughfall, and soil water content from November 2014 to March 2016 at the forest-savannah transition zone of Ghana with climate and drought events during the study period serving as proxy for projected future climatic conditions in marginal cocoa cultivation areas of West Africa.

View Article and Find Full Text PDF

In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics.

View Article and Find Full Text PDF

Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested).

View Article and Find Full Text PDF

The new approaches advocated by the conservation community to integrate conservation and livelihood development now explicitly address landscape mosaics composed of agricultural and forested land rather than only protected areas and largely intact forests. We refer specifically to a call by Harvey et al. (2008) to develop a new approach based on six strategies to integrate biodiversity conservation with sustainable livelihoods in Mesoamerican landscape mosaics.

View Article and Find Full Text PDF

Coffee fruits grown in shade are characterized by larger bean size than those grown under full-sun conditions. The present study assessed the effects of shade on bean characteristics and sugar metabolism by analyzing tissue development, sugar contents, activities of sucrose metabolizing enzymes and expression of sucrose synthase-encoding genes in fruits of coffee (Coffea arabica L.) plants submitted to full-sun (FS) and shade (SH) conditions.

View Article and Find Full Text PDF

For buyers of Arabica coffee (Coffea arabica L.) in Central America, elevation and variety are important indicators of quality. We compared coffee produced by three types of varieties established in various trials at elevations ranging from 700-1600 m in three countries (El Salvador, Costa Rica and Honduras).

View Article and Find Full Text PDF

Source-sink relationships of field-grown plants of Coffea arabica L. cultivar 'Caturra' were manipulated to analyze the contribution of soluble sugars to sink feedback down-regulation of maximal leaf net CO2 assimilation rate (Amax). Total soluble sugar concentration (SSCm) and Amax were measured in the morning and afternoon on mature leaves of girdled branches bearing either high or low fruit loads.

View Article and Find Full Text PDF

Increasing fruit load (from no berries present to 25, 50 and 100% of the initial fruit load) significantly decreased branch growth on 5-year-old coffee (Coffea arabica L.) trees of the dwarf cultivar 'Costa Rica 95', during their third production cycle. Ring-barking the branches further reduced their growth.

View Article and Find Full Text PDF