Understanding the origin of the dissipative mechanisms that control the dynamics of a contact line is a real challenge. In order to study the energy dissipation at the contact line when a moving meniscus encounters topographical defects, we developed atomic force microscopy (AFM) experiments using nanofibers with nanometer scale defects. These experiments realized with three liquids are performed in two AFM modes: the contact mode (C-AFM) is used to measure the energy associated with the contact angle hysteresis in the limit of a static situation, deduced from advancing and receding dipping experiments on an isolated defect; the frequency-modulation mode (FM-AFM) is performed at different amplitudes and then velocities to measure the energy dissipated as the contact line moves over the same defect.
View Article and Find Full Text PDFIn this paper, we study the interaction of a contact line with molecules physically adsorbed on a surface. We developed specific atomic force microscopy (AFM) experiments where a nanoneedle attached at the extremity of the cantilever is dipped in a liquid droplet. The motion of the contact line at the extremity of the meniscus formed depends on the presence of topographical and chemical defects at the surface of the nanoneedle.
View Article and Find Full Text PDFThe canonical problem of the icing of a water drop lying on a cold substrate is revisited to take into account the effects of atmospheric conditions on the icing front kinetics and on the tip formation. Here, we demonstrate both experimentally and theoretically that the air humidity induces liquid-vapor phase change at the icing droplet interface and that the associated heat transfer has a strong influence on both the icing front kinetics and the iced drop shape. The experimental results obtained in this study, as well as results from literature, compare well to a modified Stefan model accounting for the effects of humidity, showing a good agreement with the experimental data of both the front kinetics and tip angle.
View Article and Find Full Text PDFThe interaction of the contact line with topographical or chemical defects at the nanometer scale sets the macroscopic wetting properties of a liquid on a solid substrate. Based on specific atomic force microscopy (AFM) experiments, we demonstrate that molecules physically sorbed on a surface are removed by a dynamic contact line. The mechanism of molecules desorption is directly determined by the capillary force exerted at the contact line on the molecules.
View Article and Find Full Text PDFWe study the effects of hydrodynamic forces in frequency-modulation AFM experiments (FM-AFM) in liquid. We first establish the theoretical equations needed to derive the interaction stiffness k and the damping β due to the hydrodynamic forces from the frequency shift and the excitation amplitude. We develop specific FM-AFM experiments to measure the variation of k and β over a large range of distance in water up to 200 µm.
View Article and Find Full Text PDFThe interaction between an atomic force microscopy (AFM) probe and a thin film of water deposited over a flat substrate is studied using molecular dynamics (MD). The effects of the film thickness and the probe radius on both the deformation height of the liquid interface and the distance of the jump to contact at which the liquid comes in direct contact with the probe are investigated. The dynamics of the surface deformation and the role of interface fluctuations are studied in detail.
View Article and Find Full Text PDFWe study the effect of an impressing AC magnetic field at the bottom of a liquid metal layer of thickness h. In this situation the fluid is set in motion by the buoyancy forces caused by internal heat sources. The heat sources, caused by the Joule effect induced by the AC field, present an exponentially decaying profile, with characteristic length δ.
View Article and Find Full Text PDFWe study the static and dynamic interaction between a horizontal cylindrical nano-probe and a thin liquid film. The effects of the physical and geometrical parameters, with a special focus on the film thickness, the probe speed, and the distance between the probe and the free surface are analyzed. Deformation profiles have been computed numerically from a Reynolds lubrication equation, coupled to a modified Young-Laplace equation, which takes into account the probe/liquid and the liquid/substrate non-retarded van der Waals interactions.
View Article and Find Full Text PDFWe investigate the transient and stationary buoyant motion of the Rayleigh-Bénard instability when the fluid layer is subjected to a vertical, steady magnetic field. For Rayleigh number, Ra, in the range 10-10, and Hartmann number, Ha, between 0 and 100, we performed three-dimensional direct numerical simulations. To predict the growth rate and the wavelength of the initial regime observed with the numerical simulations, we developed the linear stability analysis beyond marginal stability for this problem.
View Article and Find Full Text PDFThe dynamic interaction between a local probe and a viscous liquid film, which provokes the deformation of the latter, has been studied. The pressure difference across the air-liquid interface is calculated with a modified Young-Laplace equation, which takes into account the effects of gravity, surface tension, and liquid film-substrate and probe-liquid attractive interaction potentials. This pressure difference is injected into the lubrication approximation equation, in order to depict the evolution of a viscous thin-film.
View Article and Find Full Text PDFBackground And Aims: Various correlations have been identified between anatomical features of bordered pits in angiosperm xylem and vulnerability to cavitation, suggesting that the mechanical behaviour of the pits may play a role. Theoretical modelling of the membrane behaviour has been undertaken, but it requires input of parameters at the nanoscale level. However, to date, no experimental data have indicated clearly that pit membranes experience strain at high levels during cavitation events.
View Article and Find Full Text PDFWe study the interaction between a solid particle and a liquid interface. A semianalytical solution of the nonlinear equation that describes the interface deformation points out the existence of a bifurcation behavior for the apex deformation as a function of the distance. We show that the apex curvature obeys a simple power-law dependency on the deformation.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2007
Seven model polydimethylsiloxane (PDMS) networks were obtained by hydrosilation of a difunctional vinyl-terminated PDMS prepolymer with a SiH-containing cross-linker. Viscoelastic experiments, completed by size exclusion chromatography and static light scattering experiments, were performed in order to study the influence of molecular parameters on the dynamic properties around the sol-gel threshold. The dynamic critical parameter u was determined from experiments close to and above the sol-gel threshold.
View Article and Find Full Text PDF