Publications by authors named "Philippe Thomen"

Microorganisms have evolved complex systems to respond to environmental signals. Gradients of particular molecules and elemental ions alter the behavior of microbes and their distribution within their environment. Microdevices coupled with automated image-based methods are now employed to analyze the instantaneous distribution and motion behaviors of microbial species in controlled environments at small temporal scales, mimicking, to some extent, macro conditions.

View Article and Find Full Text PDF

species cause diseases in a large variety of plants and represent a serious agricultural threat, leading, every year, to multibillion dollar losses. Infection occurs when their biflagellated zoospores move across the soil at their characteristic high speed and reach the roots of a host plant. Despite the relevance of zoospore spreading in the epidemics of plant diseases, individual swimming of zoospores have not been fully investigated.

View Article and Find Full Text PDF

While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These patterns reported here appear with non-motile bacteria, which excludes both chemotactic origins and other motility-based ones.

View Article and Find Full Text PDF

The biflagellate zoospores of some phytopathogenic Phytophthora species spontaneously aggregate within minutes in suspension. We show here that Phytophthora parasitica zoospores can form aggregates in response to a K gradient with a particular geometric arrangement. Using time-lapse live imaging in macro- and microfluidic devices, we defined (i) spatio-temporal and concentration-scale changes in the gradient, correlated with (ii) the cell distribution and (iii) the metrics of zoospore motion (velocity, trajectory).

View Article and Find Full Text PDF

To increase our understanding of bacterial biofilm complexity, real- time quantitative analyses of the living community functions are required. To reach this goal, accurate fluorescent reporters are needed. In this paper, we used the classical fluorescent genetic reporters of the GFP family and demonstrated their limits in the context of a living biofilm.

View Article and Find Full Text PDF

Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm.

View Article and Find Full Text PDF

The adaptive evolution of large asexual populations is generally characterized by competition between clones carrying different beneficial mutations. Interference slows down the adaptation speed and makes the theoretical description of the dynamics more complex with respect to the successional occurrence and fixation of beneficial mutations typical of small populations. A simplified modeling framework considering multiple beneficial mutations with equal and constant fitness advantage is known to capture some of the essential features of laboratory evolution experiments.

View Article and Find Full Text PDF

Laboratory-based evolution experiments on microorganisms that do not recombine frequently show two distinct phases: an initial rapid increase in fitness followed by a slower regime. To explore the population structure and the evolutionary tree in the later stages of adaptation, we evolved a very large population (~3 × 10(10)) of Acinetobacter baylyi bacteria for approximately 2,800 generations from a single clone. The population was maintained in a chemostat at a high dilution rate.

View Article and Find Full Text PDF

To study virus propagation, we have developed a method by which the propagation of the Lambda bacteriophage can be observed and quantified. This is done by creating a fusion protein of the capsid protein gpD and the enhanced yellow fluorescent protein (EYFP). We show that this fusion allows capsid formation and that the modified viruses propagate on a surface covered with host bacteria thus forming fluorescent plaques.

View Article and Find Full Text PDF

Polymerases form a class of enzymes that act as molecular motors as they move along their nucleic acid substrate during catalysis, incorporating nucleotide triphosphates at the end of the growing chain and consuming chemical energy. A debated issue is how the enzyme converts chemical energy into motion [J. Gelles and R.

View Article and Find Full Text PDF

Within a single-molecule configuration, we have studied rotational drag on double stranded linear DNA by measuring the force during mechanical opening and closing of the double helix at different rates. The molecule is cranked at one end by the effect of unzipping and is free to rotate at the other end. In this configuration the rotational friction torque tau on double-stranded DNA leads to an additional contribution to the opening force.

View Article and Find Full Text PDF