IEEE Trans Syst Man Cybern B Cybern
December 2006
The transferable belief model (TBM) is a model to represent quantified uncertainties based on belief functions, unrelated to any underlying probability model. In this framework, two main approaches to pattern classification have been developed: the TBM model-based classifier, relying on the general Bayesian theorem (GBT), and the TBM case-based classifier, built on the concept of similarity of a pattern to be classified with training patterns. Until now, these two methods seemed unrelated, and their connection with standard classification methods was unclear.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
February 2004
This paper presents a method for assessing the reliability of a sensor in a classification problem based on the transferable belief model. First, we develop a method for the evaluation of the reliability of a sensor when considered alone. The method is based on finding the discounting factor minimizing the distance between the pignistic probabilities computed from the discounted beliefs and the actual values of data.
View Article and Find Full Text PDF