Graphene being a zero-gap material, considerable efforts have been made to develop semiconductors whose structure is compatible with its hexagonal lattice. Size reduction is a promising way to achieve this objective. The reduction of both dimensions of graphene leads to graphene quantum dots.
View Article and Find Full Text PDFWe revisit Mandel's notion that the degree of coherence equals the degree of indistinguishability by performing Hong-Ou-Mandel- (HOM-)type interferometry with single photons elastically scattered by a cw resonantly driven excitonic transition of an InAs/GaAs epitaxial quantum dot. We present a comprehensive study of the temporal profile of the photon coalescence phenomenon which shows that photon indistinguishability can be tuned by the excitation laser source, in the same way as their coherence time. A new figure of merit, the coalescence time window, is introduced to quantify the delay below which two photons are indistinguishable.
View Article and Find Full Text PDFNonequilibrium patterns in open systems are ubiquitous in nature, with examples as diverse as desert sand dunes, animal coat patterns such as zebra stripes, or geographic patterns in parasitic insect populations. A theoretical foundation that explains the basic features of a large class of patterns was given by Turing in the context of chemical reactions and the biological process of morphogenesis. Analogs of Turing patterns have also been studied in optical systems where diffusion of matter is replaced by diffraction of light.
View Article and Find Full Text PDFThe variation of the optical absorption of carbon nanotubes with their geometry has been a long-standing question at the heart of both metrological and applicative issues, in particular because optical spectroscopy is one of the primary tools for the assessment of the chiral species abundance of samples. Here, we tackle the chirality dependence of the optical absorption with an original method involving ultraefficient energy transfer in porphyrin-nanotube compounds that allows uniform photoexcitation of all chiral species. We measure the absolute absorption cross section of a wide range of semiconducting nanotubes at their S22 transition and show that it varies by up to a factor of 2.
View Article and Find Full Text PDFEnergy transfer in noncovalently bound porphyrin/carbon nanotube compounds is investigated at the single-nanocompound scale. Excitation spectroscopy of the luminescence of the nanotube shows two resonances arising from intrinsic excitation of the nanotube and from energy transfer from the porphyrin. Polarization diagrams show that both resonances are highly anisotropic, with a preferred direction along the tube axis.
View Article and Find Full Text PDFWe report on a new, original and efficient method for pi-stacking functionalization of single-wall carbon nanotubes. This method is applied to the synthesis of a high-yield light-harvesting system combining single-wall carbon nanotubes and porphyrin molecules. We developed a micelle-swelling technique that leads to controlled and stable complexes presenting an efficient energy transfer.
View Article and Find Full Text PDF