Publications by authors named "Philippe Plamondon"

This study assessed the contribution of electron microscopy to the characterization of nanoparticles and compared the degree of variability in sizes observed within each stage when sampled by two cascade impactors: an Electrical Low Pressure Impactor (ELPI) and a Micro-Orifice Uniform Deposit Impactor (MOUDI). A TiO(2) nanoparticle (5 nm) suspension was aerosolized in an inhalation chamber. Nanoparticles sampled by the impactors were collected on aluminum substrates or TEM carbon-coated copper grids using templates, specifically designed in our laboratories, for scanning and transmission electron microscopy (SEM, TEM) analysis, respectively.

View Article and Find Full Text PDF

Beryllium is used in a wide variety of industries. Chronic beryllium disease is the most common occupational disease among workers following exposure to Be. The objective of this study was to determine the immunologic effects of two different particle sizes of Be metal, <2.

View Article and Find Full Text PDF

Aluminum smelters produce in excess thousand of tons of spent pot lining (SPL) each year. CAlSiFrit technology is a recycling process in which spent pot lining (SPL) is recovered and transformed into commercial value-added products. Since SPL contains beryllium (Be), exposures encountered by workers may result in adverse effects.

View Article and Find Full Text PDF

The problems associated with detecting and characterizing beryllium (Be) particles in industrial samples from Québec were addressed in the companion article (Rouleau et al., 2005). The present study is a continuation of the work aimed at redefining the current occupational exposure level for beryllium.

View Article and Find Full Text PDF

Chemical and physical characterizations of beryllium (Be) particles found in settled dust samples from four industries based in Québec were attempted using a variety of analytical methods. Bulk particle chemistry was determined using inductively coupled plasma-mass spectrometry (ICP-MS), graphite furnace atomic absorption spectrometry (GFAAS), and instrumental neutron activation analysis (INAA). Time-of-flight secondary-ion mass spectrometry (TOF-SIMS), transmission electron microscopy, scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction (XRD), electron energy loss spectrometry (EELS), and Auger microscopy were used to characterize physicochemical properties of particles.

View Article and Find Full Text PDF

The use of methylcyclopentadienyl manganese tricarbonyl (MMT) in unleaded gasoline has given rise to numerous debates on the potential public health risk associated with manganese emissions. In fact, combustion products are mainly Mn phosphate, Mn sulfate, and Mn phosphate/sulfate mixture. Our research group did several inhalation studies in order to assess the toxicity of each Mn species.

View Article and Find Full Text PDF