Curr Opin Endocrinol Diabetes Obes
August 2022
Purpose Of Review: Dissect the field of antigen-specific immunotherapy (ASIT) in type 1 diabetes (T1D), highlighting the major barriers currently blocking clinical translation.
Recent Findings: ASIT remains a promising approach in T1D to re-establish the proper balance in the immune system to avoid the autoimmune-mediated attack or destruction of beta-cells in the pancreas. Despite some encouraging preclinical results, ASIT has not yet successfully translated into clinical utility, predominantly due to the lack of validated and clinically useful biomarkers.
Type 1 diabetes is an autoimmune disease in which insulin-secreting β-cells are destroyed, leading to a life-long dependency on exogenous insulin. There are no approved disease-modifying therapies available, and future immunotherapies would need to avoid generalized immune suppression. We developed a novel plasmid expressing preproinsulin2 and a combination of immune-modulatory cytokines (transforming growth factor-beta-1, interleukin [IL] 10 and IL-2) capable of near-complete prevention of autoimmune diabetes in non-obese diabetic mice.
View Article and Find Full Text PDFType 1 diabetes is an autoimmune disease in which insulin-secreting β-cells are destroyed, leading to a life-long dependency on exogenous insulin. There are no approved disease-modifying therapies available, and future immunotherapies would need to avoid generalized immune suppression. We developed a novel plasmid expressing preproinsulin2 and a combination of immune-modulatory cytokines (transforming growth factor-beta-1, interleukin [IL] 10 and IL-2) capable of near-complete prevention of autoimmune diabetes in non-obese diabetic mice.
View Article and Find Full Text PDFRegulatory T cells (Tregs) have suppressive functions and play an important role in controlling inflammation and autoimmunity. The migratory capacity of Tregs determines their location and their location determines whether they inhibit the priming of naïve lymphocytes in lymphoid tissues or the effector phase of immune responses at inflamed sites. Tregs generated or expanded in vitro are currently being tested in clinics for the treatment of autoimmune disorders, however, little is known about the factors controlling their migration towards therapeutically relevant locations.
View Article and Find Full Text PDFRecent articles have highlighted the lack of reproducibility of data from scientific publications. Here we would argue that a better way to describe and also tackle this matter is to use the term "lack of robustness," since it points toward potential solutions. Presenting several case reports, we highlight examples with common underlying issues from Novo Nordisk's experience: animal model variability, reagent quality, and inter-lab variability.
View Article and Find Full Text PDFImmunotherapy for type 1 diabetes (T1D) has previously focused on suppressing the autoimmune response against pancreatic beta cells to preserve endogenous insulin production and regulate glucose levels. With increased attention toward combination therapy strategies, studies indicate the multifunctional cytokine interleukin-21 (IL-21) may be a suitable target as an immuno-modulatory arm, while glucagon-like peptide-1 receptor (GLP-1R) agonists may be appropriate as a beta cell protective arm in combination therapy for T1D. We report here that treatment with anti-IL-21 monoclonal antibody delays diabetes onset in the spontaneous non-obese diabetic (NOD) and NOD.
View Article and Find Full Text PDFAims/hypothesis: Insulin is widely considered to be a driver antigen in type 1 diabetes in humans and in mouse models of the disease. Therefore, insulin or insulin analogues are candidates for tolerogenic drugs to prevent disease onset in individuals with risk of diabetes. Previous experiments have shown that autoimmune diabetes can be prevented in NOD mice by repeated doses of insulin administered via an oral, nasal or parenteral route, but clinical trials in humans have not succeeded.
View Article and Find Full Text PDFStudies have shown oral insulin prevents type 1 diabetes (T1D) in mouse models, however human trials were inconclusive. We tested the ability of different insulins to prevent T1D in non-obese diabetic mice. Mice received oral insulin or PBS twice weekly and disease was monitored.
View Article and Find Full Text PDFThere is an ongoing need to develop strategic combinations of therapeutic agents to prevent type 1 diabetes (T1D) or to preserve islet β-cell mass in new-onset disease. Although clinical trials using candidate therapeutics are commonly based on preclinical studies, concern is growing regarding the reproducibility as well as the potential clinical translation of reported results using animal models of human disorders. In response, the National Institutes of Health Immune Tolerance Network and JDRF established a multicenter consortium of academic institutions designed to assess the efficacy and intergroup reproducibility of clinically applicable immunotherapies for reversing new-onset disease in the NOD mouse model of T1D.
View Article and Find Full Text PDFType 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells leading to inadequate glycemic control. Trials with immunomodulatory monotherapies have shown that the disease course can in principle be altered. The observed preservation of endogenous insulin secretion however is typically transient and chronic treatment is often associated with significant side effects.
View Article and Find Full Text PDFType 1 diabetes is thought to be an autoimmune condition in which self-reactive T cells attack insulin-secreting pancreatic β-cells. As a proinflammatory cytokine produced by β-cells or macrophages, interleukin-1β (IL-1β) represents a potential therapeutic target in diabetes. We reasoned IL-1β blockade could be combined with islet antigen-specific approaches involving GAD of 65 kDa (GAD65)-expressing plasmids, as previously shown in combination therapies (CTs) with anti-CD3.
View Article and Find Full Text PDFAntigen-specific interventions are desirable approaches in Type 1 Diabetes (T1D) as they can alter islet-specific autoimmunity without systemic side effects. Glutamic acid decarboxylase of 65 kDa (GAD65) is a major autoantigen in type 1 diabetes (T1D) and GAD-specific autoimmunity is a common feature of T1D in humans but also in mouse models of the disease. In humans, administration of the GAD65 protein in an alum formulation has been shown to reduce C-peptide decline in recently diagnosed patients, however, these observations were not confirmed in subsequent phase II/III clinical trials.
View Article and Find Full Text PDFCytotoxic T lymphocytes (CTLs) constitute a major effector population in pancreatic islets from patients suffering from type 1 diabetes (T1D) and thus represent attractive targets for intervention. Some studies have suggested that blocking the interaction between the chemokine CXCL10 and its receptor CXCR3 on activated CTLs potently inhibits their recruitment and prevents β-cell death. Since recent studies on human pancreata from T1D patients have indicated that both ligand and receptor are abundantly present, we reevaluated whether their interaction constitutes a pivotal node within the chemokine network associated with T1D.
View Article and Find Full Text PDFA recent type 1 diabetes (T1D) clinical trial of rituximab (a B cell-depleting anti-CD20 antibody) achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin) with anti-CD3 antibody (a T cell-directed immunomodulator) offers better protection than either entity alone, indicating that novel combination therapies that include a T1D-related autoantigen are possible. To accelerate the identification and development of novel combination therapies that can be advanced into the clinic, we have evaluated the combination of a mouse anti-CD20 antibody with either oral insulin or a proinsulin-expressing DNA vaccine.
View Article and Find Full Text PDFAlthough many studies have analyzed HLA allele frequencies in several ethnic groups in patients with scleroderma (SSc), none has been done in French Caucasian patients and none has evaluated which one of the common amino acid sequences, (67)FLEDR(71), shared by HLA-DRB susceptibility alleles, or (71)TRAELDT(77), shared by HLA-DQB1 susceptibility alleles in SSc, was the most important to develop the disease. HLA-DRB and DQB typing was performed for a total of 468 healthy controls and 282 patients with SSc allowing FLEDR and TRAELDT analyses. Results were stratified according to patient's clinical subtypes and autoantibody status.
View Article and Find Full Text PDFIn diabetic patients and susceptible mice, insulin is a targeted autoantigen. Insulin B chain 9-23 (B:9-23) autoreactive CD4 T cells are key for initiating autoimmune diabetes in NOD mice; however, little is known regarding their origin and function. To this end, B:9-23-specific, BDC12-4.
View Article and Find Full Text PDFToll-like receptors (TLRs) are evolutionary conserved molecules that recognize various microbial components and host-derived agonists from damaged cells and play a central role in innate and adaptive immunity. It has been reported that MyD88, the adaptor molecule downstream of all TLRs, except TLR3, is essential for initiation of experimental autoimmune myocarditis (EAM). To determine the role of the intracellular TLRs in EAM, TLR3(-/-), TLR7(-/-), and TLR9(-/-) mice were immunized with cardiac alpha-myosin heavy chain peptide (MyHC-alpha) in Complete Freund's Adjuvant (CFA) and their EAM scores and associated immunological responses were compared to wild-type (WT) and MyD88(-/-) mice.
View Article and Find Full Text PDFObjectives: Male microchimerism (Mc) persisting from pregnancy has been found at greater frequencies and/or higher quantities in women with scleroderma (SSc) compared with controls, suggesting a possible role in disease development. Moreover, women with an HLA-compatible child have a higher risk to develop SSc. We tested the hypothesis, on our French SSc cohort, that women with lcSSc and dcSSc, two distinct clinical subsets, have a different profile in terms of Mc and HLA compatibility in families.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2006
Toll-like receptors (TLRs) are key components of the immune system that detect microbial infection and trigger antimicrobial host defense responses. TLR5 is a sensor for monomeric flagellin, which is a component of bacterial flagella known to be a virulence factor. In this study we generated TLR5-deficient mice and investigated the role of TLR5 signaling in the detection of flagellin and antibacterial immune responses to Salmonella typhimurium and Pseudomonas aeruginosa.
View Article and Find Full Text PDF