Publications by authors named "Philippe N Q Pascua"

Article Synopsis
  • - Since 2013, there have been 167 cases of people infected with special flu viruses from pigs in the U.S. called swine-origin influenza A.
  • - Most of these viruses had a change in their genes that makes them resistant to certain medicines, but none were resistant to another type of medicine called neuraminidase inhibitors.
  • - Scientists did tests to find out how well these viruses respond to treatments and discovered that one specific change in the virus made it much harder to treat with a medicine called baloxavir.
View Article and Find Full Text PDF

Since May 2023, a novel combination of neuraminidase mutations, I223V + S247N, has been detected in influenza A(H1N1)pdm09 viruses collected in countries spanning 5 continents, mostly in Europe (67/101). The viruses belong to 2 phylogenetically distinct groups and display ≈13-fold reduced inhibition by oseltamivir while retaining normal susceptibility to other antiviral drugs.

View Article and Find Full Text PDF

Influenza virus neuraminidase (NA) can act as a receptor-binding protein, a role commonly attributed to hemagglutinin (HA). In influenza A(H3N2) viruses, three NA amino acid residues have previously been associated with NA-mediated hemagglutination: T148, D151, and more recently, H150. These residues are part of the 150-loop of the NA monomer.

View Article and Find Full Text PDF

Neuraminidase inhibitors (NAIs) are recommended for influenza treatment and prevention worldwide. The most widely prescribed NAI is oral oseltamivir, while inhaled zanamivir is less commonly used. Using phenotypic neuraminidase (NA) enzymatic assays and molecular modeling approaches, we examined the ability of the investigational orally-dosed NAI AV5080 to inhibit viruses of the influenza A(H1N1)pdm09, A(H3N2), A(H5N1), and A(H7N9) subtypes and the influenza B/Victoria- and B/Yamagata-lineages containing NA substitutions conferring oseltamivir or zanamivir resistance including: NA-R292K, NA-E119G/V, NA-H274Y, NA-I122L/N, and NA-R150K.

View Article and Find Full Text PDF
Article Synopsis
  • Clade 2.3.4.4b HPAI A(H5N1) viruses have shown potential drug resistance, with about 0.8% of analyzed strains exhibiting markers for resistance to FDA-approved antivirals, indicating a possible public health threat.
  • Testing revealed that most of these viruses remain susceptible to existing antivirals, particularly favoring investigational options like AV5080 over conventional treatments.
  • Continued surveillance of these viruses is crucial for understanding their evolution and refining strategies for antiviral stockpiling to mitigate potential health risks.
View Article and Find Full Text PDF

Baloxavir marboxil (baloxavir) is a highly effective, single-dose influenza therapeutic. Identification of molecular markers in the target polymerase acidic (PA) protein that can diminish baloxavir efficacy is an ongoing goal of the scientific community. In this study, we generated recombinant Victoria-lineage and Yamagata-lineage influenza B viruses (IBVs) containing 6 substitutions (E23G/K, F36V, N37T, E119D, and E199G) spanning the endonuclease domain of the PA.

View Article and Find Full Text PDF

Baloxavir marboxil (BXM) is approved for treating uncomplicated influenza. The active metabolite baloxavir acid (BXA) inhibits cap-dependent endonuclease activity of the influenza virus polymerase acidic protein (PA), which is necessary for viral transcription. Treatment-emergent E23G or E23K (E23G/K) PA substitutions have been implicated in reduced BXA susceptibility, but their effect on virus fitness and transmissibility, their synergism with other BXA resistance markers, and the mechanisms of resistance have been insufficiently studied.

View Article and Find Full Text PDF

Understanding the evolutionary adaptations that enable avian influenza viruses to transmit in mammalian hosts could allow better detection of zoonotic viruses with pandemic potential. We applied ancestral sequence reconstruction to gain viruses representing different adaptive stages of the European avian-like (EA) H1N1 swine influenza virus as it transitioned from avian to swine hosts since 1979. Ancestral viruses representing the avian-like precursor virus and EA swine influenza viruses from 1979-1983, 1984-1987 and 1988-1992 were reconstructed and characterized.

View Article and Find Full Text PDF

Clinical efficacy of the influenza antiviral baloxavir marboxil (baloxavir) is compromised by treatment-emergent variants harboring a polymerase acidic protein I38T (isoleucine-38-threonine) substitution. However, the fitness of I38T-containing influenza B viruses (IBVs) remains inadequately defined. After the pharmacokinetics of the compound were confirmed in ferrets, animals were injected subcutaneously with 8 mg/kg of baloxavir acid (BXA) at 24 h postinoculation with recombinant BXA-sensitive (BXA-, I38) or BXA-resistant (BXA-, I38T) B/Brisbane/60/2008 (Victoria lineage) virus.

View Article and Find Full Text PDF

Several subtypes of avian influenza (AI) viruses have caused human infections in recent years; however, there is a severe knowledge gap regarding the capacity of wild bird viruses to infect mammals. To assess the risk of mammalian infection by AI viruses from their natural reservoirs, a panel of isolates from 34 wild birds was examined in animal models. All selected AI virus subtypes were found to predominantly possess Eurasian lineage, although reassortment with North American lineage AI viruses was also noted in some isolates.

View Article and Find Full Text PDF

Background: Baloxavir marboxil is an antiviral drug that targets the endonuclease activity of the influenza virus polymerase acidic (PA) protein. PA I38T/M/F substitutions reduce its antiviral efficacy.

Objectives: To understand the effects of the 19 possible amino acid (AA) substitutions at PA 38 on influenza A(H1N1)pdm09 polymerase activity and inhibition by baloxavir acid, the active metabolite of baloxavir marboxil.

View Article and Find Full Text PDF

Human influenza A and B viruses are highly contagious and cause similar illnesses and seasonal epidemics. Currently available antiviral drugs have limited efficacy in humans with compromised immune systems; therefore, alternative strategies for protection are needed. Here, we investigated whether monoclonal antibodies (MAbs) targeting hemagglutinin (HA) and/or neuraminidase (NA) proteins would protect immunosuppressed mice from severe infections with influenza B virus.

View Article and Find Full Text PDF

The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk.

View Article and Find Full Text PDF

Baloxavir marboxil (BXM) was approved in 2018 for treating influenza A and B virus infections. It is a first-in-class inhibitor targeting the endonuclease activity of the virus polymerase acidic (PA) protein. Clinical trial data revealed that PA amino acid substitutions at residue 38 (I38T/F/M) reduced BXM potency and caused virus rebound in treated patients, although the fitness characteristics of the mutant viruses were not fully defined.

View Article and Find Full Text PDF

Identifying evolutionary routes to antiviral resistance among influenza viruses informs molecular-based resistance surveillance and clinical decisions. To improve antiviral management and understand whether clinically identified neuraminidase (NA) inhibitor (NAI) resistance-associated markers affect influenza B viruses of the Victoria- or Yamagata-lineages differentially, we generated a panel of NAI-resistant viruses (carrying E105K, G145E, R150K, D197N, I221 L/N/T/V, H273Y, N294S, or G407S substitutions; B numbering) in B/Brisbane/60/2008 (BR/08) and B/Phuket/3073/2013 (PH/13). In both backgrounds, I221 L/N/T/V resulted in reduced or highly reduced inhibition (HRI) by one to three currently available NAIs.

View Article and Find Full Text PDF

In this study, we demonstrate a novel mechanism for hemagglutinin (HA) activation in a naturally occurring H7N6 avian influenza A virus strain, A/mallard duck/Korea/6L/2007 (A/Mdk/6L/07). This novel mechanism allows for systemic infection of chickens, ducks, and mice, and A/Mdk/6L/07 can replicate without exogenous trypsin and exhibits broad tissue tropism in animals despite the presence of a monobasic HA cleavage motif (PEIPKGR/G). The trypsin-independent growth phenotype requires the N6 neuraminidase and the specific recognition of glycine at the P2 position of the HA cleavage motif by a thrombin-like protease.

View Article and Find Full Text PDF

Background: Influenza B virus infections remain insufficiently studied and antiviral management in immunocompromised patients is not well defined. The treatment regimens for these high-risk patients, which have elevated risk of severe disease-associated complications, require optimization and can be partly addressed via animal models.

Methods: We examined the efficacy of monotherapy with the RNA-dependent RNA polymerase inhibitor T-705 (favipiravir) in protecting genetically modified, permanently immunocompromised BALB scid mice against lethal infection with B/Brisbane/60/2008 (BR/08) virus.

View Article and Find Full Text PDF

Immunocompromised patients are highly susceptible to influenza virus infections. Although neuraminidase inhibitor (NAI) therapy has proved effective in these patients, the treatment regimens require optimization, which can be partly addressed via animal models. Here, we describe a pharmacologically immunosuppressed mouse model for studying the pathogenesis of influenza B viruses and evaluating the efficacy of antiviral treatment.

View Article and Find Full Text PDF

Influenza B viruses are important human pathogens that remain inadequately studied, largely because available animal models are poorly defined. Here, we developed an immunocompromised murine models for influenza B virus infection, which we subsequently used to study pathogenicity and to examine antiviral efficacy of the neuraminidase inhibitor peramivir. We studied three influenza B viruses that represent both the Yamagata (B/Massachusetts/2/2012 and B/Phuket/3073/2013) and Victoria (B/Brisbane/60/2008, BR/08) lineages.

View Article and Find Full Text PDF

Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia.

View Article and Find Full Text PDF

Neuraminidase (NA) inhibitors (NAIs) are the only antiviral drugs recommended for influenza treatment and prophylaxis. Although NAI-resistant influenza B viruses that could pose a threat to public health have been reported in the field, their fitness is poorly understood. We evaluated in ferrets the pathogenicity and relative fitness of reverse genetics (rg)-generated influenza B/Yamanashi/166/1998-like viruses containing E119A or H274Y NA substitutions (N2 numbering).

View Article and Find Full Text PDF

Antiviral drugs are important in preventing and controlling influenza, particularly when vaccines are ineffective or unavailable. A single class of antiviral drugs, the neuraminidase inhibitors (NAIs), is recommended for treating influenza. The limited therapeutic options and the potential risk of antiviral resistance are driving the search for additional small-molecule inhibitors that act on influenza virus proteins.

View Article and Find Full Text PDF

To investigate the molecular changes that allow influenza B viruses to adapt to new mammalian hosts, influenza B/Florida/04/2006 was serially passaged in BALB/c mice until highly virulent. The viral factors underlying this transition were then investigated in mice and ferrets. Five viruses, including the wild-type virus (P0), three intermediate viruses (P5, P9, and P12), and a lethal mouse-adapted virus (P17 (MA)), harbored one to five amino acid substitutions in the hemagglutinin, M, NP, and PA segments suggesting that these mutations enhance virulence.

View Article and Find Full Text PDF

Coinfection of ferrets with H5N1 and pH1N1 viruses resulted in two predominate genotypes in the lungs containing surface genes of highly pathogenic avian influenza H5N1 virus in the backbone of pandemic H1N1 2009 (pH1N1). Compared to parental strains, these reassortants exhibited increased growth and virulence in vitro and in mice but failed to be transmitted indirectly to naive contact ferrets. Thus, this demonstrates a possible natural reassortment following coinfection as well as the pathogenicity of the potential reassortants.

View Article and Find Full Text PDF

In 2011-2012, contemporary North American-like H3N2 swine influenza viruses (SIVs) possessing the 2009 pandemic H1N1 matrix gene (H3N2pM-like virus) were detected in domestic pigs of South Korea where H1N2 SIV strains are endemic. More recently, we isolated novel reassortant H1N2 SIVs bearing the Eurasian avian-like swine H1-like hemagglutinin and Korean swine H1N2-like neuraminidase in the internal gene backbone of the H3N2pM-like virus. In the present study, we clearly provide evidence on the genetic origins of the novel H1N2 SIVs virus through genetic and phylogenetic analyses.

View Article and Find Full Text PDF