This paper concerns the viscoelastic properties and the resulting structure of colloidal systems with short-range attractions in the regime where the volume fraction f is small. Unlike the high ϕ regime, which is well understood in terms of mode-coupling theory (MCT), the low ϕ regime is still the subject of a debate based on different concepts such as percolation, diffusion-limited colloidal aggregation (DLCA), jamming, or cluster mode-coupling approach. Prior to the analysis of three examples of attractive systems at low ϕ values, a summary of concepts relevant to understanding the formation and properties of such attractive particles is discussed in the present study.
View Article and Find Full Text PDFResponsive materials have been used to generate structures with built-in complex geometries, linear actuators and microswimmers. These results suggest that complex, fully functional machines composed solely from shape-changing materials might be possible . Nonetheless, to accomplish rotary motion in these materials still relies on the classical wheel and axle motifs.
View Article and Find Full Text PDFWe study the suspensions of magnetic particles, the precursor state of magnetic gels and elastomers. We use magnetic particles with a permanent magnetization which is high enough to overcome thermal energy and low enough to guarantee a long live time of the sample. These particles form a space-filling structure at very low volume fractions (approximately 0.
View Article and Find Full Text PDFIn this short review we give an overview of selected macroscopic properties of sidechain liquid crystalline elastomers (LCEs) focusing on three closely related topics (a) the influence of relative rotations between the director and the strain field on various reorientation instabilities, (b) the nonlinear stress-strain curves for the polydomain-monodomain transition and for the reorientation transition in LCE monodomains and (c) the shear mechanical response of LCEs in the linear regime. We consider only already existing real materials and do not discuss hypothetical "ideal" systems. We conclude that all observations reported to date can be accounted for without invoking the concept of soft elasticity, but instead relying on macroscopic dynamics in the linear and the nonlinear domain.
View Article and Find Full Text PDF