Publications by authors named "Philippe Mailly"

Brain function relies on the generation of a large variety of morphologically and functionally diverse, but specific, neuronal synapses. Here we show that, in mice, the initial formation of synapses on cerebellar Purkinje cells involves a presynaptic protein-CBLN1, a member of the C1q protein family-that is secreted by all types of excitatory inputs. The molecular program then evolves only in one of the Purkinje cell inputs, the inferior olivary neurons, with the additional expression of the presynaptic secreted proteins C1QL1, CRTAC1 and LGI2.

View Article and Find Full Text PDF

Background: Dendritic spines are tiny protrusions found along the dendrites of neurons, and their number is a measure of the density of synaptic connections. Altered density and morphology is observed in several pathologies, and spine formation as well as morphological changes correlate with learning and memory. The detection of spines in microscopy images and the analysis of their morphology is therefore a prerequisite for many studies.

View Article and Find Full Text PDF

A major challenge in understanding the causes of female infertility is to elucidate mechanisms governing the development of female germ cells, named oocytes. Their development is marked by cell growth and subsequent divisions, two critical phases that prepare the oocyte for fusion with sperm to initiate embryogenesis. During growth, oocytes reorganize their cytoplasm to position the nucleus at the cell center, an event predictive of successful oocyte development in mice and humans and, thus, their embryogenic potential.

View Article and Find Full Text PDF

Astrocytes are highly ramified and send out perivascular processes (PvAPs) that entirely sheathe the brain's blood vessels. PvAPs are equipped with an enriched molecular repertoire that sustains astrocytic regulatory functions at the vascular interface. In the mouse, PvAP development starts after birth and is essentially complete by postnatal day (P) 15.

View Article and Find Full Text PDF

Papillary and reticular dermis show distinct extracellular matrix (ECM) and vascularization corresponding to their specific functions. These characteristics are associated with gene expression patterns of fibroblasts freshly isolated from their native microenvironment. In order to assess the relevance of these fibroblast subpopulations in a tissue engineering context, we investigated their contribution to matrix production and vascularization using cell sheet culture conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes are crucial for regulating iron levels in the brain and their ferritin mRNA translation may vary based on location within the cell.
  • A study used a new method to analyze how ferritin mRNAs are distributed in astrocytes in the hippocampus under different conditions like aging and Alzheimer’s disease.
  • The findings showed that iron regulation through ferritin mRNA density and location changes in various contexts, suggesting a role in maintaining iron balance in both healthy and disease states.
View Article and Find Full Text PDF

Astroglial release of molecules is thought to actively modulate neuronal activity, but the nature, release pathway, and cellular targets of these neuroactive molecules are still unclear. Pannexin 1, expressed by neurons and astrocytes, form nonselective large pore channels that mediate extracellular exchange of molecules. The functional relevance of these channels has been mostly studied in brain tissues, without considering their specific role in different cell types, or in neurons.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied the brain's tiny blood vessels in mice at two different ages, 5 days old and 15 days old.
  • They found that different types of cells in the blood vessels grow and change in specific ways as the mice get older.
  • They discovered that the network of smooth muscle cells (which help control blood flow) gets bigger and works better at 15 days, which is important for making sure the brain gets enough blood.
View Article and Find Full Text PDF

Angiopoietin-like 4 (ANGPTL4) is a target of hypoxia that accumulates in the endothelial extracellular matrix. While ANGPTL4 is known to regulate angiogenesis and vascular permeability, its context-dependent role related to vascular endothelial growth factor (VEGF) has been suggested in capillary morphogenesis. We here thus develop in vitro 3D models coupled to imaging and morphometric analysis of capillaries to decipher ANGPTL4 functions either alone or in the presence of VEGF.

View Article and Find Full Text PDF

Age is a major risk factor for neurodegenerative diseases like Parkinson's disease, but few studies have explored the contribution of key hallmarks of aging, namely DNA methylation changes and heterochromatin destructuration, in the neurodegenerative process. Here, we investigated the consequences of viral overexpression of , a multifactorial protein involved in DNA demethylation, in the mouse midbrain. overexpression induced global and stable changes in DNA methylation, particularly in introns of genes related to neuronal functions, as well as on LINE-1 transposable elements.

View Article and Find Full Text PDF

Local translation is a conserved mechanism conferring cells the ability to quickly respond to local stimuli. In the brain, it has been recently reported in astrocytes, whose fine processes contact blood vessels and synapses. Yet the specificity and regulation of astrocyte local translation remain unknown.

View Article and Find Full Text PDF

Astrocytes are morphologically complex and use local translation to regulate distal functions. To study the distribution of mRNA in astrocytes, we combined mRNA detection via hybridization with immunostaining of the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). mRNAs at the level of GFAP-immunolabelled astrocyte somata, and large and fine processes were analysed using AstroDot, an ImageJ plug-in and the R package AstroStat.

View Article and Find Full Text PDF
Article Synopsis
  • Nucleus positioning in mammalian oocytes is influenced by an F-actin pressure gradient, which remains unclear in terms of its biological importance.
  • Research utilized advanced imaging, biophysical analysis, and experiments on mouse oocyte mutants to investigate how this pressure gradient affects the nucleus.
  • Findings revealed that optimal F-actin levels promote proper nuclear shape and chromatin mobility, which are crucial for gene expression and embryo development, indicating a link between cytoplasmic structures and oocyte functionality.
View Article and Find Full Text PDF

Aims: Recent trials provide conflicting results on the association between glucagon-like peptide 1 receptor agonists (GLP-1RA) and diabetic retinopathy (DR). The aim of the AngioSafe type 2 diabetes (T2D) study was to determine the role of GLP-1RA in angiogenesis using clinical and preclinical models.

Methods: We performed two studies in humans.

View Article and Find Full Text PDF

During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered.

View Article and Find Full Text PDF

Mitotic spindles assemble from two centrosomes, which are major microtubule-organizing centers (MTOCs) that contain centrioles. Meiotic spindles in oocytes, however, lack centrioles. In mouse oocytes, spindle microtubules are nucleated from multiple acentriolar MTOCs that are sorted and clustered prior to completion of spindle assembly in an "inside-out" mechanism, ending with establishment of the poles.

View Article and Find Full Text PDF

Dysfunction of the orbitofrontal (OFC) and anterior cingulate (ACC) cortices has been linked with several psychiatric disorders, including obsessive-compulsive disorder, major depressive disorder, posttraumatic stress disorder, and addiction. These conditions are also associated with abnormalities in the anterior limb of the internal capsule, the white matter (WM) bundle carrying ascending and descending fibers from the OFC and ACC. Furthermore, deep-brain stimulation (DBS) for psychiatric disorders targets these fibers.

View Article and Find Full Text PDF

In somatic cells, the position of the cell centroid is dictated by the centrosome. The centrosome is instrumental in nucleus positioning, the two structures being physically connected. Mouse oocytes have no centrosomes, yet harbour centrally located nuclei.

View Article and Find Full Text PDF

Upregulation of extracellular chondroitin sulfate proteoglycans (CSPG) is a primary cause for the failure of axons to regenerate after spinal cord injury (SCI), and the beneficial effect of their degradation by chondroitinase ABC (ChABC) is widely documented. Little is known, however, about the effect of ChABC treatment on astrogliosis and revascularization, two important factors influencing axon regrowth. This was investigated in the present study.

View Article and Find Full Text PDF

The striatum projection neurons are striatonigral and striatopallidal medium-sized spiny neurons (MSNs) that preferentially express D1 (D1R) and D2 (D2R) dopamine receptors, respectively. It is generally assumed that these neurons are physically intermingled, without cytoarchitectural organization although this has not been tested. To address this question we used BAC transgenic mice expressing enhanced green fluorescence (EGFP) under the control of Drd1a or Drd2 promoter and spatial point pattern statistics.

View Article and Find Full Text PDF

Previous studies in monkeys disclosed a specific arrangement of corticostriatal projections. Prefrontal and premotor areas form dense projection fields surrounded by diffuse terminal areas extending outside the densely innervated region and overlapping with projections from other areas. In this study, the mode of prefrontostriatal innervation was analyzed in rats using a 3D approach.

View Article and Find Full Text PDF

Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP), a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice.

View Article and Find Full Text PDF
Article Synopsis
  • Motoneurons in the spinal nucleus of the bulbocavernosus (SNB) and their target muscles are critical for male copulation and fertility, with testosterone playing a significant role in their differentiation and activation.
  • The study investigated the role of androgen receptors (AR) in the nervous system by analyzing mice with disrupted AR, finding that while AR is not essential for muscle development or protection from atrophy, it is crucial for the size and structure of SNB motoneurons.
  • Results showed that AR impacts the morphology of SNB cells and contributes to normal behavior and fertility in males, as mutant mice exhibited reduced copulatory behavior and fertility issues.
View Article and Find Full Text PDF

Computer based three-dimensional reconstruction and co-registration of experimental data provide powerful tools for integration of observation derived from various technical approaches leading to better understanding of brain functions. Here we describe a method to build a 3D multi-modal and multi-dimensional model of brain structures providing framework for data sharing. All image processing, registration and 3D reconstruction were performed using open source software IMOD package software and ImageJ.

View Article and Find Full Text PDF

Dendritic synthesis and release of neuropeptides have been demonstrated in hypothalamic neurosecretory neurons. Here we tested whether this mechanism may be applicable to galanin in rat locus coeruleus (LC) neurons. Light and electron microscopic immunocytochemistry demonstrated the occurrence of galanin peptide in secretory granules within dendritic processes.

View Article and Find Full Text PDF